×

zbMATH — the first resource for mathematics

A decomposition based evolutionary algorithm with direction vector adaption and selection enhancement. (English) Zbl 1453.90160
Summary: To further improve the search ability of the decomposition based many/multi-objective evolutionary algorithm (MOEA/D) in the tackling many-objective optimization problems (MaOPs) possessing complex characteristics (e.g., disconnected, degenerate, inverted, extremely convex or differently-scaled), we suggest an adaptive MOEA/D with better versatility, where the weight vector adaption and selection mechanism are improved. Firstly, a new niche-guided scheme by considering both the vector angle and Euclidean distance is proposed to leverage the search direction adaption upon different evolution phases, which is expected to be more robust for handling different types of irregular Pareto fronts (PFs). Secondly, in mating selection, a coordinated selection scheme aided by a multi-criterion decision procedure is utilized to enhance the effectiveness of recombination. Finally, in environmental selection, a steady state replacement strategy considering both the ensemble ranking of favorite subproblems with respect to solutions and improvement region restriction of subproblems is employed to alleviate misleading selection. Comparison experiments on benchmark MaOPs with diverse characteristics have been performed and the empirical results demonstrate the superiority of our proposal. The effects of direction vector adaption mechanism and other pertinent enhancements are also investigated.
MSC:
90C29 Multi-objective and goal programming
68W50 Evolutionary algorithms, genetic algorithms (computational aspects)
90C59 Approximation methods and heuristics in mathematical programming
Software:
HypE; MOEA/D
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bader, J.; Zitzler, E., Hype: an algorithm for fast hypervolume−based many-objective optimization, Evol. Comput., 19, 1, 45-76 (2011)
[2] Cai, X.; Mei, Z.; Fan, Z., A decomposition-based many-objective evolutionary algorithm with two types of adjustments for direction vectors, IEEE Trans. Cybern., 48, 8, 2335-2348 (2018)
[3] Cheng, J.; Yen, G. G.; Zhang, G., A many-objective evolutionary algorithm with enhanced mating and environmental selections, IEEE Trans. Evol. Comput., 19, 4, 592-605 (2015)
[4] Cheng, R.; Jin, Y.; Olhofer, M.; Sendhoff, B., A reference vector guided evolutionary algorithm for many-objective optimization, IEEE Trans. Evol. Comput., 20, 5, 773-791 (2016)
[5] Deb, K.; Jain, H., An evolutionary many-objective optimization algorithm using reference−point-based nondominated sorting approach, part i: solving problems with box constraints, IEEE Trans. Evol. Comput., 18, 4, 577-601 (2014)
[6] Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T., A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Trans. Evol. Comput., 6, 2, 182-197 (2002)
[7] Deb, K.; Thiele, L.; Laumanns, M.; Zitzler, E., Scalable multi-objective optimization test problems, Evolutionary Computation, 2002. CEC ’02. Proceedings of the 2002 Congress on, 1, 825-830 (2002)
[8] Giagkiozis, I.; Purshouse, R.; Fleming, P., Generalized decomposition and cross entropy methods for many-objective optimization, Inf. Sci., 282, 363-387 (2014) · Zbl 1355.90091
[9] Huband, S.; Hingston, P.; Barone, L.; While, L., A review of multiobjective test problems and a scalable test problem toolkit, IEEE Trans. Evol. Comput., 10, 5, 477-506 (2006)
[10] Jain, H.; Deb, K., An evolutionary many-objective optimization algorithm using reference−point based nondominated sorting approach, part II: handling constraints and extending to an adaptive approach, IEEE Trans. Evol. Comput., 18, 4, 602-622 (2014)
[11] Jiang, S.; Yang, S., An improved multiobjective optimization evolutionary algorithm based on decomposition for complex pareto fronts, IEEE Trans. Cybern., 46, 2, 421-437 (2016)
[12] Jiang, S.; Yang, S., A strength pareto evolutionary algorithm based on reference direction for multiobjective and many-objective optimization, IEEE Trans. Evol. Comput., 21, 3, 329-346 (2017)
[13] Khan, B.; Hanoun, S.; Johnstone, M.; Lim, C. P.; Creighton, D.; Nahavandi, S., A scalarization-based dominance evolutionary algorithm for many-objective optimization, Inf. Sci., 474, 236-252 (2019)
[14] Li, K.; Deb, K.; Zhang, Q.; Kwong, S., An evolutionary many-objective optimization algorithm based on dominance and decomposition, IEEE Trans. Evol. Comput., 19, 5, 694-716 (2015)
[15] Li, K.; Kwong, S.; Zhang, Q.; Deb, K., Interrelationship-based selection for decomposition multiobjective optimization, IEEE Trans. Cybern., 45, 10, 2076-2088 (2015)
[16] Li, K.; Zhang, Q.; Kwong, S.; Li, M.; Wang, R., Stable matching-based selection in evolutionary multiobjective optimization, IEEE Trans. Evol. Comput., 18, 6, 909-923 (2014)
[17] Li, M.; Yang, S.; Liu, X., Shift-based density estimation for pareto-based algorithms in many-objective optimization, IEEE Trans. Evol. Comput., 18, 3, 348-365 (2014)
[18] Li, M.; Yang, S.; Liu, X., Pareto or Non-Pareto: bi-criterion evolution in multiobjective optimization, IEEE Trans. Evol. Comput., 20, 5, 645-665 (2016)
[19] Li, M.; Yao, X., Quality evaluation of solution sets in multiobjective optimisation: a survey, ACM Comput. Surv., 52, 2, 26:1-26:38 (2019)
[20] Liu, H. L.; Chen, L.; Zhang, Q.; Deb, K., Adaptively allocating search effort in challenging many-objective optimization problems, IEEE Trans. Evol. Comput., 22, 3, 433-448 (2018)
[21] Liu, H. L.; Gu, F.; Zhang, Q., Decomposition of a multiobjective optimization problem into a number of simple multiobjective subproblems, IEEE Trans. Evol. Comput., 18, 3, 450-455 (2014)
[22] Liu, Y.; Gong, D.; Sun, J.; Jin, Y., A many-objective evolutionary algorithm using a onE−by-one selection strategy, IEEE Trans. Cybern., 47, 9, 2689-2702 (2017)
[23] Liu, Y.; Zhu, N.; Li, K.; Li, M.; Zheng, J.; Li, K., An angle dominance criterion for evolutionary many-objective optimization, Inf. Sci. (2019)
[24] Qi, Y.; Ma, X.; Liu, F.; Jiao, L.; Sun, J.; Wu, J., MOEA/D with adaptive weight adjustment, Evol. Comput., 22, 2, 231-264 (2014)
[25] Saborido, R.; Ruiz, A. B.; Luque, M., Global WASF-GA: an evolutionary algorithm in multiobjective optimization to approximate the whole pareto optimal front, Evol. Comput., 25, 2, 309-349 (2017)
[26] Santos, T.; Takahashi, R. H.C., On the performance degradation of dominancE−based evolutionary algorithms in many-objective optimization, IEEE Trans. Evol. Comput., 22, 1, 19-31 (2018)
[27] Tian, Y.; Cheng, R.; Zhang, X.; Cheng, F.; Jin, Y., An indicator based multi-objective evolutionary algorithm with reference point adaptation for better versatility, IEEE Trans. Evol. Comput., 22, 4, 609-622 (2018)
[28] Trivedi, A.; Srinivasan, D.; Sanyal, K.; Ghosh, A., A survey of multiobjective evolutionary algorithms based on decomposition, IEEE Trans. Evol. Comput., 21, 3, 440-462 (2017)
[29] Wang, L.; Zhang, Q.; Zhou, A.; Gong, M.; Jiao, L., Constrained subproblems in a decomposition-based multiobjective evolutionary algorithm, IEEE Trans. Evol. Comput., 20, 3, 475-480 (2016)
[30] Wang, R.; Zhang, Q.; Zhang, T., Decomposition-based algorithms using pareto adaptive scalarizing methods, IEEE Trans. Evol. Comput., 20, 6, 821-837 (2016)
[31] Wang, Z.; Zhang, Q.; Li, H.; Ishibuchi, H.; Jiao, L., On the use of two reference points in decomposition based multiobjective evolutionary algorithms, Swarm Evol. Comput., 34, 89-102 (2017)
[32] Wang, Z.; Zhang, Q.; Zhou, A.; Gong, M.; Jiao, L., Adaptive replacement strategies for MOEA/D, IEEE Trans. Cybern., 46, 2, 474-486 (2016)
[33] While, L.; Bradstreet, L.; Barone, L., A fast way of calculating exact hypervolumes, IEEE Trans. Evol. Comput., 16, 1, 86-95 (2012)
[34] Wu, M.; Li, K.; Kwong, S.; Zhou, Y.; Zhang, Q., Matching-based selection with incomplete lists for decomposition multiobjective optimization, IEEE Trans. Evol. Comput., 21, 4, 554-568 (2017)
[35] Xiang, Y.; Zhou, Y.; Li, M.; Chen, Z., A vector anglE−based evolutionary algorithm for unconstrained many-objective optimization, IEEE Trans. Evol. Comput., 21, 1, 131-152 (2017)
[36] Yang, S.; Jiang, S.; Jiang, Y., Improving the multiobjective evolutionary algorithm based on decomposition with new penalty schemes, Soft comput., 21, 16, 4677-4691 (2017)
[37] Yuan, Y.; Xu, H.; Wang, B.; Yao, X., A new dominance relation-based evolutionary algorithm for many-objective optimization, IEEE Trans. Evol. Comput., 20, 1, 16-37 (2016)
[38] Yuan, Y.; Xu, H.; Wang, B.; Zhang, B.; Yao, X., Balancing convergence and diversity in decomposition-based many-objective optimizers, IEEE Trans. Evol. Comput., 20, 2, 180-198 (2016)
[39] Zhang, Q.; Li, H., MOEA/D: a multiobjective evolutionary algorithm based on decomposition, IEEE Trans. Evol. Comput., 11, 6, 712-731 (2007)
[40] Zhang, X.; Tian, Y.; Jin, Y., A knee point-driven evolutionary algorithm for many-objective optimization, IEEE Trans. Evol. Comput., 19, 6, 761-776 (2015)
[41] Zhou, J.; Gao, L.; Yao, X.; Chan, F. T.S.; Zhang, J.; Li, X.; Lin, Y., A decomposition and statistical learning based many-objective artificial bee colony optimizer, Inf. Sci., 496, 82-108 (2019)
[42] Zhou, J.; Yao, X., A hybrid approach combining modified artificial bee colony and cuckoo search algorithms for multi-objective cloud manufacturing service composition, Int. J. Prod. Res., 55, 16, 4765-4784 (2017)
[43] Zhou, J.; Yao, X., A hybrid artificial bee colony algorithm for optimal selection of QoS-based cloud manufacturing service composition, Int. J. Adv. Manuf. Technol., 88, 9-12, 3371-3387 (2017)
[44] Zhou, J.; Yao, X., Multi-objective hybrid artificial bee colony algorithm enhanced with LȨvy flight and self-adaption for cloud manufacturing service composition, Appl. Intell., 47, 3, 721-742 (2017)
[45] Zhou, J.; Yao, X., Multi-population parallel self-adaptive differential artificial bee colony algorithm with application in largE−scale service composition for cloud manufacturing, Appl. Soft. Comput., 56, 379-397 (2017)
[46] Zhou, J.; Yao, X.; Chan, F. T.; Lin, Y.; Jin, H.; Gao, L.; Wang, X., An individual dependent multi-colony artificial bee colony algorithm, Inf. Sci., 485, 114-140 (2019)
[47] Zhou, J.; Yao, X.; Lin, Y.; Chan, F. T.; Li, Y., An adaptive multi-population differential artificial bee colony algorithm for many-objective service composition in cloud manufacturing, Inf. Sci., 456, 50-82 (2018)
[48] Zhou, J.; Yao, X.; Liu, M.; Zhang, J.; Tao, T., StatE-of-art review on new emerging intelligent manufacturing paradigms, Comput. Integr. Manuf. Syst., 23, 3, 624-639 (2017)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.