×

Hyper-Laplacian regularized nonlocal low-rank matrix recovery for hyperspectral image compressive sensing reconstruction. (English) Zbl 1453.94022

Summary: Sparsity prior is a powerful tool for compressive sensing reconstruction (CSR) of hyperspectral image (HSI). However, conventional HSI-CSR strategies are not tuned to extracting refine spatial and spectral sparsity prior. Moreover, these CSR techniques are weak in preserving edges and suppressing artifacts. To alleviate these issues, this paper represents a first effort to characterize the spatial and spectral knowledge using the structure-based sparsity prior. Specifically, we introduce the nonlocal low-rank matrix recovery model and the hyper-Laplacian prior to encode the spatial and spectral structured sparsity, respectively. The key advantage of the proposed method, termed as hyper-Laplacian regularized nonlocal low-rank matrix recovery (HyNLRMR), is to adopt insightful property, namely the nonlocal self-similarity across the spatial domain and the consistency along the spectral domain. Then, the alternative direction multiplier method (ADMM) is designed to effectively implement the proposed algorithm. Experimental results on various HSI datasets verify that the proposed algorithm can significantly outperform existing state-of-the-art HSI-CSR methods.

MSC:

94A08 Image processing (compression, reconstruction, etc.) in information and communication theory

Software:

TVAL3; FSIM
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Boyd, S.; Parikh, N.; Chu, E.; Peleato, B.; Eckstein, J., Distributed optimization and statistical learning via the alternating direction method of multipliers, Foundations and Trends in Machine Learning, 3, 1, 1-122 (2011) · Zbl 1229.90122
[2] Cai, J. F.; Cands, E. J.; Shen, Z., A singular value thresholding algorithm for matrix completion, SIAM J. Optim., 20, 4, 1956-1982 (2008) · Zbl 1201.90155
[3] Cands, E. J.; Wakin, M. B.; Boyd, S. P., Enhancing sparsity by reweighted 1 minimization, Journal of Fourier Analysis and Applications, 14, 5-6, 877-905 (2008) · Zbl 1176.94014
[4] Candes, E. J.; Romberg, J.; Tao, T., Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information, IEEE Trans. Inf. Theory, 52, 2, 489-509 (2006) · Zbl 1231.94017
[5] Candes, E. J.; Wakin, M. B., An introduction to compressive sampling, IEEE Signal Process Mag, 25, 2, 21-30 (2008)
[6] Christophe, E.; Mailhes, C.; Duhamel, P., Hyperspectral image compression: adapting spiht and ezw to anisotropic 3-d wavelet coding, IEEE Trans. Image Process., 17, 12, 2334 (2008) · Zbl 1371.94096
[7] Daubechies, I.; Defriese, M.; Mol, C. D., An iterative thresholding algorithm for linear inverse problems with a sparsity constraint, Commun Pure Appl Math, 57, 11, 1413-1457 (2004) · Zbl 1077.65055
[8] Dilip, K.; Rob, F., Fast image deconvolution using hyper-laplacian priors, Advances in Neural Information Processing Systems 22 - Proceedings of the 2009 Conference, 1033-1041 (2009)
[9] Dong, W.; Shi, G.; Li, X.; Ma, Y.; Huang, F., Compressive sensing via nonlocal low-rank regularization, IEEE Trans. Image Process., 23, 8, 3618-3632 (2014) · Zbl 1374.94085
[10] Donoho, D. L., Compressed sensing, IEEE Trans. Inf. Theory, 52, 4, 1289-1306 (2006) · Zbl 1288.94016
[11] Donoho, D. L.; Tsaig, Y.; Drori, I.; Starck, J., Sparse solution of underdetermined systems of linear equations by stagewise orthogonal matching pursuit, IEEE Trans. Inf. Theory, 58, 2, 1094-1121 (2012) · Zbl 1365.94069
[12] Du, B.; Zhang, M.; Zhang, L.; Hu, R.; Tao, D., Pltd: patch-based low-rank tensor decomposition for hyperspectral images, IEEE Trans Multimedia, 19, 1, 67-79 (2017)
[13] Du, Q.; Ly, N.; Fowler, J. E., An operational approach to pca+jpeg2000 compression of hyperspectral imagery, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 7, 6, 2237-2245 (2014)
[14] Duarte, M. F.; Baraniuk, R. G., Kronecker compressive sensing, IEEE Trans. Image Process., 21, 2, 494-504 (2012) · Zbl 1372.94379
[15] Eason, D. T.; Andrews, M., Total variation regularization via continuation to recover compressed hyperspectral images, IEEE Trans. Image Process., 24, 1, 284-293 (2015) · Zbl 1408.94158
[16] Golbabaee, M.; Vandergheynst, P., Joint trace/tv norm minimization: A new efficient approach for spectral compressive imaging, 2012 19th IEEE International Conference on Image Processing, 933-936 (2012)
[17] Gu, S.; Xie, Q.; Meng, D.; Zuo, W.; Feng, X.; Zhang, L., Weighted nuclear norm minimization and its applications to low level vision, Int J Comput Vis, 121, 2, 183-208 (2017)
[18] Ji, S.; Xue, Y.; Carin, L., Bayesian compressive sensing, IEEE Trans. Signal Process., 56, 6, 2346-2356 (2008) · Zbl 1390.94231
[19] Karami, A.; Yazdi, M.; Mercier, G., Compression of hyperspectral images using discerete wavelet transform and tucker decomposition, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 5, 2, 444-450 (2012)
[20] Khan, Z.; Shafait, F.; Mian, A., Joint group sparse pca for compressed hyperspectral imaging, IEEE Trans. Image Process., 24, 12, 4934 (2015) · Zbl 1408.94302
[21] Li, C.; Sun, T.; Kelly, K. F.; Zhang, Y., A compressive sensing and unmixing scheme for hyperspectral data processing, IEEE Trans. Image Process., 21, 3, 1200-1210 (2012) · Zbl 1372.94383
[22] Li, C.; Yin, W.; Jiang, H.; Zhang, Y., An efficient augmented lagrangian method with applications to total variation minimization, Comput Optim Appl, 56, 3, 507-530 (2013) · Zbl 1287.90066
[23] Li, L.; Sun, C.; Lin, L.; Li, J.; Jiang, S.; Yin, J., A dual-kernel spectral-spatial classification approach for hyperspectral images based on mahalanobis distance metric learning, Inf Sci (Ny), 429, 260-283 (2018)
[24] Li, Z.; Tang, J., Weakly supervised deep matrix factorization for social image understanding, IEEE Trans. Image Process., 26, 1, 276-287 (2017) · Zbl 1409.94410
[25] Li, Z.; Tang, J.; He, X., Robust structured nonnegative matrix factorization for image representation, IEEE Trans Neural Netw Learn Syst, 29, 5, 1947-1960 (2018)
[26] Li, Z.; Tang, J.; Mei, T., Deep collaborative embedding for social image understanding, IEEE Trans Pattern Anal Mach Intell, 1-14 (2018)
[27] Melgani, F.; Bruzzone, L., Classification of hyperspectral remote sensing images with support vector machines, IEEE Trans. Geosci. Remote Sens., 42, 8, 1778-1790 (2004)
[28] Meza, P.; Ortiz, I.; Vera, E.; Martinez, J., Compressive hyperspectral imaging recovery by spatial-spectral non-local means regularization., Opt Express, 26, 6, 7043 (2018)
[29] Osher, S.; Yin, W.; Goldfarb, D.; Xu, J., An iterative regularization method for total variation-based image restoration, 4 (2005) · Zbl 1090.94003
[30] Ritter, G. X.; Urcid, G., A lattice matrix method for hyperspectral image unmixing, Inf Sci (Ny), 181, 10, 1787-1803 (2011) · Zbl 1217.94018
[31] Tan, M.; Tsang, I. W.; Wang, L., Matching pursuit lasso part i: sparse recovery over big dictionary, IEEE Trans. Signal Process., 63, 3, 727-741 (2015) · Zbl 1394.94578
[32] Wang, Y.; Lin, L.; Zhao, Q.; Yue, T.; Meng, D.; Leung, Y., Compressive sensing of hyperspectral images via joint tensor tucker decomposition and weighted total variation regularization, IEEE Geosci. Remote Sens. Lett., 14, 12, 2457-2461 (2017)
[33] Wang, Z.; Bovik, A. C.; Sheikh, H. R.; Simoncelli, E. P., Image quality assessment: from error visibility to structural similarity, IEEE Trans. Image Process., 13, 4, 600-612 (2004)
[34] Xue, J.; Zhao, Y.; Liao, W.; Chan, J. C.W., Total variation and rank-1 constraint rpca for background subtraction, IEEE Access, 6, 49955-49966 (2018)
[35] Xue, J.; Zhao, Y.; Liao, W.; Chan, J. C.W., Nonlocal low-rank regularized tensor decomposition for hyperspectral image denoising, IEEE Trans. Geosci. Remote Sens., 1-16 (2019)
[36] Xue, J.; Zhao, Y.; Liao, W.; Chan, J. C.W., Nonlocal tensor sparse representation and low-rank regularization for hyperspectral image compressive sensing reconstruction. remote sensing, Remote Sens (Basel), 11, 2, 193 (2019)
[37] Xue, J.; Zhao, Y.; Liao, W.; Kong, S. G., Joint spatial and spectral low-rank regularization for hyperspectral image denoising, IEEE Trans. Geosci. Remote Sens., 56, 4, 1940-1958 (2018)
[38] Yang, J. X.; Zhao, Y. Q.; Chan, J. C.W., Learning and transferring deep joint spectral – spatial features for hyperspectral classification, IEEE Trans. Geosci. Remote Sens., 55, 8, 4729-4742 (2017)
[39] Yang, S.; Wang, M.; Li, P.; Jin, L.; Wu, B.; Jiao, L., Compressive hyperspectral imaging via sparse tensor and nonlinear compressed sensing, IEEE Trans. Geosci. Remote Sens., 53, 11, 5943-5957 (2015)
[40] Zhang, C.; Cheng, J.; Tian, Q., Incremental codebook adaptation for visual representation and categorization, IEEE Trans Cybern, 48, 7, 2012-2023 (2018)
[41] Zhang, C.; Cheng, J.; Tian, Q., Multiview label sharing for visual representations and classifications, IEEE Trans Multimedia, 20, 4, 903-913 (2018)
[42] Zhang, C.; Cheng, J.; Tian, Q., Structured weak semantic space construction for visual categorization, IEEE Trans Neural Netw Learn Syst, 29, 8, 3442-3451 (2018)
[43] Zhang, C.; Liang, C.; Li, L.; Liu, J.; Huang, Q.; Tian, Q., Fine-grained image classification via low-rank sparse coding with general and class-specific codebooks, IEEE Trans Neural Netw Learn Syst, 28, 7, 1550-1559 (2017)
[44] Zhang, C.; Liu, J.; Liang, C.; Xue, Z.; Pang, J.; Huang, Q., Image classification by non-negative sparse coding, correlation constrained low-rank and sparse decomposition, Comput. Vision Image Understanding, 123, 14-22 (2014)
[45] Zhang, L.; Wei, W.; Tian, C.; Li, F.; Zhang, Y., Exploring structured sparsity by a reweighted laplace prior for hyperspectral compressive sensing, IEEE Trans. Image Process., 25, 10, 4974-4988 (2016) · Zbl 1408.94802
[46] Zhang, L.; Wei, W.; Zhang, Y.; Shen, C.; Hengel, A.; Shi, Q., Dictionary learning for promoting structured sparsity in hyperspectral compressive sensing, IEEE Trans. Geosci. Remote Sens., 54, 12, 7223-7235 (2016)
[47] Zhang, L.; Zhang, L.; Mou, X.; Zhang, D., Fsim: a feature similarity index for image quality assessment, IEEE Trans. Image Process., 20, 8, 2378-2386 (2011) · Zbl 1373.62333
[48] Zhang, L.; Zhang, L.; Tao, D.; Huang, X.; Du, B., Compression of hyperspectral remote sensing images by tensor approach, Neurocomputing, 147, 1, 358-363 (2015)
[49] Zhang, X.; Burger, M.; Bresson, X.; Osher, S., Bregmanized nonlocal regularization for deconvolution and sparse reconstruction., SIAM J Imaging Sci, 3, 3, 253-276 (2010) · Zbl 1191.94030
[50] Zuo, W.; Meng, D.; Zhang, L.; Feng, X.; Zhang, D., A generalized iterated shrinkage algorithm for non-convex sparse coding, 2013 IEEE International Conference on Computer Vision, 217-224 (2013)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.