×

Exponential-family models of random graphs: inference in finite, super and infinite population scenarios. (English) Zbl 07307194

Summary: Exponential-family Random Graph Models (ERGMs) constitute a large statistical framework for modeling dense and sparse random graphs with short- or long-tailed degree distributions, covariate effects and a wide range of complex dependencies. Special cases of ERGMs include network equivalents of generalized linear models (GLMs), Bernoulli random graphs, \(\beta\)-models, \(p_1\)-models and models related to Markov random fields in spatial statistics and image processing. While ERGMs are widely used in practice, questions have been raised about their theoretical properties. These include concerns that some ERGMs are near-degenerate and that many ERGMs are non-projective. To address such questions, careful attention must be paid to model specifications and their underlying assumptions, and to the inferential settings in which models are employed. As we discuss, near-degeneracy can affect simplistic ERGMs lacking structure, but well-posed ERGMs with additional structure can be well-behaved. Likewise, lack of projectivity can affect non-likelihood-based inference, but likelihood-based inference does not require projectivity. Here, we review well-posed ERGMs along with likelihood-based inference. We first clarify the core statistical notions of “sample” and “population” in the ERGM framework, separating the process that generates the population graph from the observation process. We then review likelihood-based inference in finite, super and infinite population scenarios. We conclude with consistency results, and an application to human brain networks.

MSC:

62-XX Statistics
PDF BibTeX XML Cite
Full Text: DOI arXiv Euclid

References:

[1] Airoldi, E., Blei, D., Fienberg, S. and Xing, E. (2008). Mixed membership stochastic blockmodels. J. Mach. Learn. Res. 9 1981-2014. · Zbl 1225.68143
[2] Almquist, Z. W. and Bagozzi, B. E. (2019). Using radical environmentalist texts to uncover network structure and network features. Sociol. Methods Res. 48 905-960.
[3] Amini, A. A., Chen, A., Bickel, P. J. and Levina, E. (2013). Pseudo-likelihood methods for community detection in large sparse networks. Ann. Statist. 41 2097-2122. · Zbl 1277.62166
[4] Aristoff, D. and Radin, C. (2013). Emergent structures in large networks. J. Appl. Probab. 50 883-888. · Zbl 1276.05106
[5] Asuncion, A., Liu, Q., Ihler, A. T. and Smyth, P. (2010). Learning with blocks: Composite likelihood and contrastive divergence. In Thirtheenth International Conference on AI and Statistics 33-40.
[6] Atchadé, Y. F., Lartillot, N. and Robert, C. (2013). Bayesian computation for statistical models with intractable normalizing constants. Braz. J. Probab. Stat. 27 416-436. · Zbl 1298.62046
[7] Barabási, A.-L. and Albert, R. (1999). Emergence of scaling in random networks. Science 286 509-512. · Zbl 1226.05223
[8] Barndorff-Nielsen, O. (1978). Information and Exponential Families in Statistical Theory. Wiley, Chichester. · Zbl 0387.62011
[9] Bearman, P. S., Moody, J. and Stovel, K. (2004). Chains of affection: The structure of adolescent romantic and sexual networks. Amer. J. Sociol. 110 44-91.
[10] Berk, R. H. (1972). Consistency and asymptotic normality of MLE’s for exponential models. Ann. Math. Stat. 43 193-204. · Zbl 0253.62005
[11] Besag, J. (1974). Spatial interaction and the statistical analysis of lattice systems. J. Roy. Statist. Soc. Ser. B 36 192-236. · Zbl 0327.60067
[12] Bhamidi, S., Bresler, G. and Sly, A. (2008). Mixing time of exponential random graphs. In 2008 IEEE 49th Annual IEEE Symposium on Foundations of Computer Science 803-812. · Zbl 1238.60011
[13] Bhamidi, S., Bresler, G. and Sly, A. (2011). Mixing time of exponential random graphs. Ann. Appl. Probab. 21 2146-2170. · Zbl 1238.60011
[14] Bhamidi, S., Chakraborty, S., Cranmer, S. and Desmarais, B. (2018). Weighted exponential random graph models: Scope and large network limits. J. Stat. Phys. 173 704-735. · Zbl 1403.60014
[15] Bickel, P. J. and Chen, A. (2009). A nonparametric view of network models and Newman-Girvan and other modularities. In Proceedings of the National Academy of Sciences 106 21068-21073. · Zbl 1359.62411
[16] Bickel, P. J., Chen, A. and Levina, E. (2011). The method of moments and degree distributions for network models. Ann. Statist. 39 2280-2301. · Zbl 1232.91577
[17] Binkiewicz, N., Vogelstein, J. T. and Rohe, K. (2017). Covariate-assisted spectral clustering. Biometrika 104 361-377. · Zbl 07072212
[18] Bollobás, B. (1985). Random Graphs. Academic Press [Harcourt Brace Jovanovich, Publishers], London. · Zbl 0567.05042
[19] Bollobás, B., Riordan, O., Spencer, J. and Tusnády, G. (2001). The degree sequence of a scale-free random graph process. Random Structures Algorithms 18 279-290. · Zbl 0985.05047
[20] Borgs, C., Chayes, J. T., Cohn, H. and Veitch, V. (2019). Sampling perspectives on sparse exchangeable graphs. Ann. Probab. 47 2754-2800. · Zbl 1448.60025
[21] Boucheron, S., Lugosi, G. and Massart, P. (2013). Concentration Inequalities: A Nonasymptotic Theory of Independence. Oxford Univ. Press, Oxford. · Zbl 1279.60005
[22] Brailly, J., Favre, G., Chatellet, J. and Lazega, E. (2016). Embeddedness as a multilevel problem: A case study in economic sociology. Soc. Netw. 44 319-333.
[23] Brown, L. D. (1986). Fundamentals of Statistical Exponential Families with Applications in Statistical Decision Theory. Institute of Mathematical Statistics Lecture Notes—Monograph Series 9. IMS, Hayward, CA.
[24] Butts, C. T. (2008). A relational event framework for social action. Sociol. Method. 38 155-200.
[25] Butts, C. T. (2011). Bernoulli graph bounds for general random graph models. Sociol. Method. 41 299-345.
[26] Butts, C. T. (2015). A novel simulation method for binary discrete exponential families, with application to social networks. J. Math. Sociol. 39 174-202. · Zbl 1331.91147
[27] Butts, C. T. (2018). A perfect sampling method for exponential family random graph models. J. Math. Sociol. 42 17-36.
[28] Butts, C. T. (2019). A dynamic process interpretation of the sparse ERGM reference model. J. Math. Sociol. 43 40-57.
[29] Butts, C. T. and Acton, R. M. (2011). Spatial modeling of social networks. In The SAGE Handbook of GIS and Society Research (T. Nyerges, H. Couclelis and R. McMaster, eds.) 222-250 12. SAGE, Thousand Oaks.
[30] Butts, C. T. and Almquist, Z. W. (2015). A flexible parameterization for baseline mean degree in multiple-network ERGMs. J. Math. Sociol. 39 163-167. · Zbl 1328.05167
[31] Byshkin, M., Stivala, A., Mira, A., Robins, G. and Lomi, A. (2018). Fast maximum likelihood estimation via equilibrium expectation for large network data. Sci. Rep. 8 11509. · Zbl 1409.91203
[32] Cai, D., Campbell, T. and Broderick, T. (2016). Edge-exchangeable graphs and sparsity. In Advances in Neural Information Processing Systems (D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon and R. Garnett, eds.) 4249-4257.
[33] Caimo, A. and Friel, N. (2011). Bayesian inference for exponential random graph models. Soc. Netw. 33 41-55.
[34] Caimo, A. and Friel, N. (2013). Bayesian model selection for exponential random graph models. Soc. Netw. 35 11-24.
[35] Caimo, A. and Gollini, I. (2020). A multilayer exponential random graph modelling approach for weighted networks. Comput. Statist. Data Anal. 142 106825, 18. · Zbl 07135540
[36] Caimo, A. and Mira, A. (2015). Efficient computational strategies for doubly intractable problems with applications to Bayesian social networks. Stat. Comput. 25 113-125. · Zbl 1331.62127
[37] Caron, F. and Fox, E. B. (2017). Sparse graphs using exchangeable random measures. J. R. Stat. Soc. Ser. B. Stat. Methodol. 79 1295-1366. · Zbl 1381.62072
[38] Chatterjee, S. and Diaconis, P. (2013). Estimating and understanding exponential random graph models. Ann. Statist. 41 2428-2461. · Zbl 1293.62046
[39] Chatterjee, S., Diaconis, P. and Sly, A. (2011). Random graphs with a given degree sequence. Ann. Appl. Probab. 21 1400-1435. · Zbl 1234.05206
[40] Choi, D. S., Wolfe, P. J. and Airoldi, E. M. (2012). Stochastic blockmodels with a growing number of classes. Biometrika 99 273-284. · Zbl 1318.62207
[41] Corander, J., Dahmström, K. and Dahmström, P. (1998). Maximum likelihood estimation for Markov graphs Technical Report Department of Statistics, Univ. Stockholm.
[42] Corander, J., Dahmström, K. and Dahmström, P. (2002). Maximum likelihood estimation for exponential random graph models. In Contributions to Social Network Analysis, Information Theory, and Other Topics in Statistics; A Festschrift in Honour of Ove Frank (J. Hagberg, ed.) 1-17. Dept. Statistics, Univ. Stockholm.
[43] Crane, H. (2018). Probabilistic Foundations of Statistical Network Analysis. Monographs on Statistics and Applied Probability 157. CRC Press, Boca Raton, FL.
[44] Crane, H. and Dempsey, W. (2018). Edge exchangeable models for interaction networks. J. Amer. Statist. Assoc. 113 1311-1326. · Zbl 1402.90027
[45] Crane, H. and Dempsey, W. (2020). A statistical framework for modern network science. Statist. Sci. To appear.
[46] Cressie, N. A. C. (1993). Statistics for Spatial Data. Wiley Series in Probability and Mathematical Statistics: Applied Probability and Statistics. Wiley, New York. · Zbl 1347.62005
[47] Dahmström, K. and Dahmström, P. (1993). ML-estimation of the clustering parameter in a Markov graph model Technical Report Univ. Stockholm, Department of Statistics. · Zbl 0377.62035
[48] Dahmström, K. and Dahmström, P. (1999). Properties of different estimators of the parameters in Markov graphs. In Bulletin of the International Statistical Institute 1-2. International Statistical Institute. Available at https://tilastokeskus.fi/isi99/proceedings/arkisto/varasto/dahm0777.pdf. · Zbl 0377.62035
[49] Dawid, A. P. and Dickey, J. M. (1977). Likelihood and Bayesian inference from selectively reported data. J. Amer. Statist. Assoc. 72 845-850. · Zbl 0372.62025
[50] Desmarais, B. A. and Cranmer, S. J. (2012). Statistical inference for valued-edge networks: The generalized exponential random graph model. PLoS ONE 7 1-12.
[51] Diaconis, P. and Janson, S. (2008). Graph limits and exchangeable random graphs. Rend. Mat. Appl. (7) 28 33-61. · Zbl 1162.60009
[52] Efron, B. (1975). Defining the curvature of a statistical problem (with applications to second order efficiency). Ann. Statist. 3 1189-1242. · Zbl 0321.62013
[53] Efron, B. (1978). The geometry of exponential families. Ann. Statist. 6 362-376. · Zbl 0436.62027
[54] Erdos, P. and Rényi, A. (1959). On random graphs. I. Publ. Math. Debrecen 6 290-297. · Zbl 0092.15705
[55] Erdos, P. and Rényi, A. (1960). On the evolution of random graphs. Magy. Tud. Akad. Mat. Kut. Intéz. Közl. 5 17-61. · Zbl 0103.16301
[56] Everitt, R. G. (2012). Bayesian parameter estimation for latent Markov random fields and social networks. J. Comput. Graph. Statist. 21 940-960.
[57] Fellows, I. and Handcock, M. S. (2012). Exponential-family random network models. Available at arXiv:1208.0121.
[58] Fellows, I. and Handcock, M. S. (2017). Removing phase transitions from Gibbs measures. In Proceedings of the 20th International Conference on Artificial Intelligence and Statistics (A. Singh and J. Zhu, eds.) 54 289-297. Proceedings of Machine Learning Research.
[59] Fienberg, S. E. (2012). A brief history of statistical models for network analysis and open challenges. J. Comput. Graph. Statist. 21 825-839.
[60] Fienberg, S. E. and Slavkovic, A. (2010). Data privacy and confidentiality. In International Encyclopedia of Statistical Science 342-345. Springer, Berlin.
[61] Fisher, R. A. (1922). On the mathematical foundations of theoretical statistics. Philos. Trans. R. Soc. Lond. Ser. A 222 309-368. · JFM 48.1280.02
[62] Fisher, R. A. (1934). Two new properties of mathematical likelihood. Proceedings of the Royal Society A 144 285-307. · Zbl 0009.21902
[63] Fosdick, B. K. and Hoff, P. D. (2015). Testing and modeling dependencies between a network and nodal attributes. J. Amer. Statist. Assoc. 110 1047-1056. · Zbl 1373.62273
[64] Fosdick, B. K., McCormick, T. H., Murphy, T. B., Ng, T. L. J. and Westling, T. (2019). Multiresolution network models. J. Comput. Graph. Statist. 28 185-196.
[65] Frank, O. and Strauss, D. (1986). Markov graphs. J. Amer. Statist. Assoc. 81 832-842. · Zbl 0607.05057
[66] Frieze, A. and Karonski, M. (2016). Introduction to Random Graphs. Cambridge Univ. Press, Cambridge. · Zbl 1328.05002
[67] Gao, C., Lu, Y. and Zhou, H. H. (2015). Rate-optimal graphon estimation. Ann. Statist. 43 2624-2652. · Zbl 1332.60050
[68] Geyer, C. J. and Thompson, E. A. (1992). Constrained Monte Carlo maximum likelihood for dependent data. J. Roy. Statist. Soc. Ser. B 54 657-699.
[69] Gilbert, E. N. (1959). Random graphs. Ann. Math. Stat. 30 1141-1144. · Zbl 0168.40801
[70] Gile, K. J. (2011). Improved inference for respondent-driven sampling data with application to HIV prevalence estimation. J. Amer. Statist. Assoc. 106 135-146. · Zbl 1396.62009
[71] Gile, K. and Handcock, M. S. (2006). Model-based assessment of the impact of missing data on inference for networks Technical Report Center for Statistics and the Social Sciences, Univ. Washington, Seattle. Available at https://www.csss.washington.edu/Papers/wp66.pdf.
[72] Gile, K. and Handcock, M. H. (2010). Respondent-driven sampling: An assessment of current methodology. Sociol. Method. 40 285-327.
[73] Gile, K. J. and Handcock, M. S. (2017). Analysis of networks with missing data with application to the National Longitudinal Study of Adolescent Health. J. R. Stat. Soc. Ser. C. Appl. Stat. 66 501-519.
[74] Gill, P. S. and Swartz, T. B. (2004). Bayesian analysis of directed graphs data with applications to social networks. J. Roy. Statist. Soc. Ser. C 53 249-260. · Zbl 1111.62303
[75] Gjoka, M., Smith, E. J. and Butts, C. T. (2014). Estimating clique composition and size distributions from sampled network data. Proceedings of the Sixth IEEE Workshop on Network Science for Communication Networks (NetSciCom 2014).
[76] Gjoka, M., Smith, E. and Butts, C. T. (2015). Estimating subgraph frequencies with or without attributes from egocentrically sampled data. Available at arxiv.org/abs/1510.08119.
[77] Goldberger, A. L., Amaral, L. A., Glass, L., Hausdorff, J. M., Ivanov, P. C., Mark, R. G., Mietus, J. E., Moody, G. B., Peng, C.-K. et al. (2000). PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation 101 e215-e220.
[78] Goldenberg, A., Zheng, A. X., Fienberg, S. E. and Airoldi, E. M. (2009). A survey of statistical network models. Found. Trends Mach. Learn. 2 129-233. · Zbl 1184.68030
[79] Gondal, N. (2018). Duality of departmental specializations and PhD exchange: A Weberian analysis of status in interaction using multilevel exponential random graph models (mERGM). Soc. Netw. 55 202-212.
[80] Goodman, L. A. (1961). Snowball sampling. Ann. Math. Stat. 32 148-170. · Zbl 0099.14203
[81] Goodreau, S. M., Kitts, J. A. and Morris, M. (2009). Birds of a feather, or friend of a friend? Using exponential random graph models to investigate adolescent social networks. Demography 46 103-125.
[82] Goodreau, S. M., Handcock, M. S., Hunter, D. R., Butts, C. T. and Morris, M. (2008). A statnet tutorial. J. Stat. Softw. 24 1-27.
[83] Grazioli, G., Martin, R. W. and Butts, C. T. (2019). Comparative exploratory analysis of intrinsically disordered protein dynamics using machine learning and network analytic methods. Frontiers in Molecular Biosciences, Biological Modeling and Simulation 6.
[84] Grazioli, G., Yu, Y., Unhelkar, M. H., Martin, R. W. and Butts, C. T. (2019). Network-based classification and modeling of amyloid fibrils. J Phys Chem B 123 5452-5462.
[85] Groendyke, C., Welch, D. and Hunter, D. R. (2012). A network-based analysis of the 1861 Hagelloch measles data. Biometrics 68 755-765. · Zbl 1270.62136
[86] Häggström, O. and Jonasson, J. (1999). Phase transition in the random triangle model. J. Appl. Probab. 36 1101-1115. · Zbl 0969.05055
[87] Handcock, M. S. (2003). Statistical models for social networks: Inference and degeneracy. In Dynamic Social Network Modeling and Analysis: Workshop Summary and Papers (R. Breiger, K. Carley and P. Pattison, eds.) 1-12. National Academies Press, Washington, DC.
[88] Handcock, M. S. and Gile, K. J. (2010). Modeling social networks from sampled data. Ann. Appl. Stat. 4 5-25. · Zbl 1189.62187
[89] Handcock, M. S., Raftery, A. E. and Tantrum, J. M. (2007). Model-based clustering for social networks. J. Roy. Statist. Soc. Ser. A 170 301-354.
[90] Hanneke, S., Fu, W. and Xing, E. P. (2010). Discrete temporal models of social networks. Electron. J. Stat. 4 585-605. · Zbl 1329.91113
[91] Harris, J. K. (2013). An Introduction to Exponential Random Graph Modeling. Sage, Thousand Oaks.
[92] Hartley, H. O. and Sielken, R. L. Jr. (1975). A “super-population viewpoint” for finite population sampling. Biometrics 31 411-422. · Zbl 0334.62005
[93] He, R. and Zheng, T. (2015). GLMLE: Graph-limit enabled fast computation for fitting exponential random graph models to large social networks. Soc. Netw. Anal. Min. 5 1-19.
[94] Heckathorn, D. D. (1997). Respondent-driven sampling: A new approach to the study of hidden populations. Soc. Probl. 44 174-199.
[95] Hoff, P. D. (2003). Random effects models for network data. In Dynamic Social Network Modeling and Analysis: Workshop Summary and Papers (R. Breiger, K. Carley and P. Pattison, eds.) 303-312. National Academies Press, Washington, DC.
[96] Hoff, P. D. (2005). Bilinear mixed-effects models for dyadic data. J. Amer. Statist. Assoc. 100 286-295. · Zbl 1117.62353
[97] Hoff, P. D. (2008). Modeling homophily and stochastic equivalence in symmetric relational data. In Advances in Neural Information Processing Systems 20 (J. C. Platt, D. Koller, Y. Singer and S. Roweis, eds.) 657-664. MIT Press, Cambridge, MA.
[98] Hoff, P. D. (2009). A hierarchical eigenmodel for pooled covariance estimation. J. R. Stat. Soc. Ser. B. Stat. Methodol. 71 971-992. · Zbl 1411.62157
[99] Hoff, P. D. (2020). Additive and multiplicative effects network models. Statist. Sci. To appear.
[100] Hoff, P. D., Raftery, A. E. and Handcock, M. S. (2002). Latent space approaches to social network analysis. J. Amer. Statist. Assoc. 97 1090-1098. · Zbl 1041.62098
[101] Holland, P. W. and Leinhardt, S. (1970). A method for detecting structure in sociometric data. Amer. J. Sociol. 76 492-513.
[102] Holland, P. W. and Leinhardt, S. (1972). Some evidence on the transitivity of positive interpersonal sentiment. Amer. J. Sociol. 77 1205-1209.
[103] Holland, P. W. and Leinhardt, S. (1976). Local structure in social networks. Sociol. Method. 1-45.
[104] Holland, P. W. and Leinhardt, S. (1981). An exponential family of probability distributions for directed graphs. J. Amer. Statist. Assoc. 76 33-65. · Zbl 0457.62090
[105] Hollway, J. and Koskinen, J. (2016). Multilevel embeddedness: The case of the global fisheries governance complex. Soc. Netw. 44 281-294.
[106] Hollway, J., Lomi, A., Pallotti, F. and Stadtfeld, C. (2017). Multilevel social spaces: The network dynamics of organizational fields. Netw. Sci. 5 187-212.
[107] Homans, G. C. (1950). The Human Group. Harcourt, Brace, New York.
[108] Huitsing, G., van Duijn, M. A. J., Snijders, T. A. B., Wang, P., Sainio, M., Salmivalli, C. and Veenstra, R. (2012). Univariate and multivariate models of positive and negative networks: Liking, disliking, and bully-victim relationships. Soc. Netw. 34 645-657.
[109] Hummel, R. M., Hunter, D. R. and Handcock, M. S. (2012). Improving simulation-based algorithms for fitting ERGMs. J. Comput. Graph. Statist. 21 920-939.
[110] Hunter, D. R. (2007). Curved exponential family models for social networks. Soc. Netw. 29 216-230.
[111] Hunter, D. R., Goodreau, S. M. and Handcock, M. S. (2008). Goodness of fit of social network models. J. Amer. Statist. Assoc. 103 248-258. · Zbl 1471.62390
[112] Hunter, D. R. and Handcock, M. S. (2006). Inference in curved exponential family models for networks. J. Comput. Graph. Statist. 15 565-583.
[113] Hunter, D. R., Krivitsky, P. N. and Schweinberger, M. (2012). Computational statistical methods for social network models. J. Comput. Graph. Statist. 21 856-882.
[114] Hunter, D. R., Handcock, M. S., Butts, C. T., Goodreau, S. M. and Morris, M. (2008). ergm: A package to fit, simulate and diagnose exponential-family models for networks. J. Stat. Softw. 24 1-29.
[115] Ising, E. (1925). Beitrag zur Theorie des Ferromagnetismus. Z. Phys. 31 253-258. · Zbl 1439.82056
[116] Janson, S. (2018). On edge exchangeable random graphs. J. Stat. Phys. 173 448-484. · Zbl 1405.05161
[117] Janson, S., Luczak, T. and Rucinski, A. (2000). Random Graphs. Wiley-Interscience Series in Discrete Mathematics and Optimization. Wiley Interscience, New York.
[118] Jin, J. (2015). Fast community detection by SCORE. Ann. Statist. 43 57-89. · Zbl 1310.62076
[119] Jin, I. H. and Liang, F. (2013). Fitting social network models using varying truncation stochastic approximation MCMC algorithm. J. Comput. Graph. Statist. 22 927-952.
[120] Jin, I. H., Yuan, Y. and Liang, F. (2013). Bayesian analysis for exponential random graph models using the adaptive exchange sampler. Stat. Interface 6 559-576. · Zbl 1326.05142
[121] Jonasson, J. (1999). The random triangle model. J. Appl. Probab. 36 852-867. · Zbl 0943.05076
[122] Karwa, V., Krivitsky, P. N. and Slavkovic, A. B. (2017). Sharing social network data: Differentially private estimation of exponential family random-graph models. J. R. Stat. Soc. Ser. C. Appl. Stat. 66 481-500.
[123] Karwa, V., Petrovic, S. and Bajic, D. (2016). DERGMs: Degeneracy-restricted exponential random graph models. Preprint. Available at arXiv:1612.03054.
[124] Karwa, V. and Slavkovic, A. (2016). Inference using noisy degrees: Differentially private \(\beta \)-model and synthetic graphs. Ann. Statist. 44 87-112. · Zbl 1331.62114
[125] Kenyon, R. and Yin, M. (2017). On the asymptotics of constrained exponential random graphs. J. Appl. Probab. 54 165-180. · Zbl 1396.05101
[126] Kolaczyk, E. D. (2009). Statistical Analysis of Network Data: Methods and Models. Springer Series in Statistics. Springer, New York. · Zbl 1277.62021
[127] Koskinen, J. (2004). Essays on Bayesian inference for social networks. Ph.D. thesis Stockholm Univ., Dept. of Statistics, Sweden.
[128] Koskinen, J. H. (2009). Using latent variables to account for heterogeneity in exponential family random graph models. In Proceedings of the 6th St. Petersburg Workshop on Simulation (S. M. Ermakov, V. B. Melas and A. N. Pepelyshev, eds.) 2 845-849. St. Petersburg State Univ., St. Petersburg, Russia.
[129] Koskinen, J. H., Robins, G. L. and Pattison, P. E. (2010). Analysing exponential random graph (p-star) models with missing data using Bayesian data augmentation. Stat. Methodol. 7 366-384. · Zbl 1233.62206
[130] Krackhardt, D. (1988). Predicting with networks: Nonparametric multiple regression analysis of dyadic data. Soc. Netw. 10 359-381.
[131] Krivitsky, P. N. (2012). Exponential-family random graph models for valued networks. Electron. J. Stat. 6 1100-1128. · Zbl 1264.91105
[132] Krivitsky, P. N. (2017). Using contrastive divergence to seed Monte Carlo MLE for exponential-family random graph models. Comput. Statist. Data Anal. 107 149-161. · Zbl 1466.62119
[133] Krivitsky, P. N. and Butts, C. T. (2017). Exponential-family random graph models for rank-order relational data. Sociol. Method. 47 68-112.
[134] Krivitsky, P. N. and Handcock, M. S. (2008). Fitting position latent cluster models for social networks with latentnet. J. Stat. Softw. 24.
[135] Krivitsky, P. N. and Handcock, M. S. (2014). A separable model for dynamic networks. J. R. Stat. Soc. Ser. B. Stat. Methodol. 76 29-46. · Zbl 1411.90079
[136] Krivitsky, P. N., Handcock, M. S. and Morris, M. (2011). Adjusting for network size and composition effects in exponential-family random graph models. Stat. Methodol. 8 319-339. · Zbl 1215.91069
[137] Krivitsky, P. N. and Kolaczyk, E. D. (2015). On the question of effective sample size in network modeling: An asymptotic inquiry. Statist. Sci. 30 184-198. · Zbl 1332.62036
[138] Krivitsky, P. N., Marcum, C. S. and Koehly, L. (2019). Exponential-family random graph models for multi-layer networks.
[139] Krivitsky, P. N. and Morris, M. (2017). Inference for social network models from egocentrically sampled data, with application to understanding persistent racial disparities in HIV prevalence in the US. Ann. Appl. Stat. 11 427-455. · Zbl 1366.62225
[140] Krivitsky, P. N., Handcock, M. S., Raftery, A. E. and Hoff, P. D. (2009). Representing degree distributions, clustering, and homophily in social networks with latent cluster random effects models. Soc. Netw. 31 204-213.
[141] Kurant, M., Markopoulou, A. and Thiran, P. (2011). Towards unbiased BFS sampling. IEEE J. Sel. Areas Commun. 29 1799-1809.
[142] Kurant, M., Gjoka, M., Wang, Y., Almquist, Z. W., Butts, C. T. and Markopoulou, A. (2012). Coarse-grained topology estimation via graph sampling. In Proceedings of ACM SIGCOMM Workshop on Online Social Networks (WOSN) ’12.
[143] Lauritzen, S. L. (1996). Graphical Models. Oxford Statistical Science Series 17. The Clarendon Press, Oxford University Press, New York.
[144] Lauritzen, S. L. (2008). Exchangeable Rasch matrices. Rend. Mat. Appl. (7) 28 83-95. · Zbl 1223.60008
[145] Lauritzen, S., Rinaldo, A. and Sadeghi, K. (2018). Random networks, graphical models and exchangeability. J. R. Stat. Soc. Ser. B. Stat. Methodol. 80 481-508. · Zbl 1398.62218
[146] Lazega, E. and Pattison, P. E. (1999). Multiplexity, generalized exchange and cooperation in organizations: A case study. Soc. Netw. 21 67-90.
[147] Lazega, E. and Snijders, T. A. B., eds. (2016). Multilevel Network Analysis for the Social Sciences. Springer, Cham.
[148] Lehmann, E. L. (1999). Elements of Large-Sample Theory. Springer Texts in Statistics. Springer, New York. · Zbl 0914.62001
[149] Lei, J. and Rinaldo, A. (2015). Consistency of spectral clustering in stochastic block models. Ann. Statist. 43 215-237. · Zbl 1308.62041
[150] Leifeld, P., Cranmer, S. J. and Desmarais, B. A. (2018). Temporal exponential random graph models with btergm: Estimation and bootstrap confidence intervals. J. Stat. Softw. 83 1-36.
[151] Liang, F. and Jin, I.-H. (2013). A Monte Carlo Metropolis-Hastings algorithm for sampling from distributions with intractable normalizing constants. Neural Comput. 25 2199-2234. · Zbl 1448.62040
[152] Liang, F., Jin, I. H., Song, Q. and Liu, J. S. (2016). An adaptive exchange algorithm for sampling from distributions with intractable normalizing constants. J. Amer. Statist. Assoc. 111 377-393.
[153] Lomi, A., Robins, G. and Tranmer, M. (2016). Introduction to multilevel social networks. Soc. Netw. 44 266-268.
[154] Lovász, L. (2012). Large Networks and Graph Limits. American Mathematical Society Colloquium Publications 60. Amer. Math. Soc., Providence, RI. · Zbl 1292.05001
[155] Lubbers, M. J. (2003). Group composition and network structure in school classes: A multilevel application of the p* model. Soc. Netw. 25 309-332.
[156] Lubbers, M. J. and Snijders, T. A. B. (2007). A comparison of various approaches to the exponential random graph model: A reanalysis of 102 student networks in school classes. Soc. Netw. 29 489-507.
[157] Lunagomez, S. and Airoldi, E. (2014). Bayesian inference from non-ignorable network sampling designs. Available at arXiv:1401.4718.
[158] Lusher, D., Koskinen, J. and Robins, G. (2013). Exponential Random Graph Models for Social Networks. Cambridge Univ. Press, Cambridge, UK.
[159] Lyne, A.-M., Girolami, M., Atchadé, Y., Strathmann, H. and Simpson, D. (2015). On Russian roulette estimates for Bayesian inference with doubly-intractable likelihoods. Statist. Sci. 30 443-467. · Zbl 1426.62092
[160] McCullagh, P. and Nelder, J. A. (1983). Generalized Linear Models. Monographs on Statistics and Applied Probability. CRC Press, London. · Zbl 0588.62104
[161] McPherson, J. M. (1983). An ecology of affiliation. Am. Sociol. Rev. 48 519-532.
[162] Mele, A. (2017). A structural model of dense network formation. Econometrica 85 825-850. · Zbl 1420.91030
[163] Meredith, C., Van den Noortgate, W., Struyve, C., Gielen, S. and Kyndt, E. (2017). Information seeking in secondary schools: A multilevel network approach. Soc. Netw. 50 35-45.
[164] Møller, J., Pettitt, A. N., Reeves, R. and Berthelsen, K. K. (2006). An efficient Markov chain Monte Carlo method for distributions with intractable normalising constants. Biometrika 93 451-458. · Zbl 1158.62020
[165] Morris, M., Handcock, M. S. and Hunter, D. R. (2008). Specification of exponential-family random graph models: Terms and computational aspects. J. Stat. Softw. 24 1-24.
[166] Mukherjee, S. (2013). Phase transition in the two star exponential random graph model. Available at arXiv:1310.4164.
[167] Mukherjee, S. (2020). Degeneracy in sparse ERGMs with functions of degrees as sufficient statistics. Bernoulli. To appear. · Zbl 1466.60014
[168] Mukherjee, R., Mukherjee, S. and Sen, S. (2018). Detection thresholds for the \(\beta \)-model on sparse graphs. Ann. Statist. 46 1288-1317. · Zbl 1392.62131
[169] Murray, I., Ghahramani, Z. and MacKay, D. J. C. (2006). MCMC for doubly-intractable distributions. In Proceedings of the 22nd Annual Conference on Uncertainty in Artificial Intelligence 359-366. AUAI Press, Corvallis, OR.
[170] Nowicki, K. and Snijders, T. A. B. (2001). Estimation and prediction for stochastic blockstructures. J. Amer. Statist. Assoc. 96 1077-1087. · Zbl 1072.62542
[171] Obando, C. and De Vico Fallani, F. (2017). A statistical model for brain networks inferred from large-scale electrophysiological signals. J. R. Soc. Interface 1-10.
[172] Okabayashi, S. and Geyer, C. J. (2012). Long range search for maximum likelihood in exponential families. Electron. J. Stat. 6 123-147. · Zbl 1336.62078
[173] Orbanz, P. and Roy, D. M. (2015). Bayesian models of graphs, arrays and other exchangeable random structures. IEEE Trans. Pattern Anal. Mach. Intell. 37 437-461.
[174] Ouzienko, V., Guo, Y. and Obradovic, Z. (2011). A decoupled exponential random graph model for prediction of structure and attributes in temporal social networks. Stat. Anal. Data Min. 4 470-486. · Zbl 07260297
[175] Park, J. and Haran, M. (2018). Bayesian inference in the presence of intractable normalizing functions. J. Amer. Statist. Assoc. 113 1372-1390. · Zbl 1402.62046
[176] Park, J. and Newman, M. E. J. (2004). Solution of the two-star model of a network. Phys. Rev. E (3) 70 066146, 5.
[177] Park, J. and Newman, M. E. J. (2005). Solution for the properties of a clustered network. Phys. Rev. E 72 026136.
[178] Pattison, P. and Robins, G. (2002). Neighborhood-based models for social networks. In Sociological Methodology (R. M. Stolzenberg, ed.) 32 301-337. Blackwell Publishing, Boston, MA.
[179] Pattison, P. and Wasserman, S. (1999). Logit models and logistic regressions for social networks: II. Multivariate relations. Br. J. Math. Stat. Psychol. 52 169-193. · Zbl 1365.62459
[180] Pattison, P. E., Robins, G. L., Snijders, T. A. B. and Wang, P. (2013). Conditional estimation of exponential random graph models from snowball sampling designs. J. Math. Psych. 57 284-296. · Zbl 1281.62245
[181] Portnoy, S. (1988). Asymptotic behavior of likelihood methods for exponential families when the number of parameters tends to infinity. Ann. Statist. 16 356-366. · Zbl 0637.62026
[182] Radin, C. and Yin, M. (2013). Phase transitions in exponential random graphs. Ann. Appl. Probab. 23 2458-2471. · Zbl 1278.05225
[183] Raftery, A. E., Niu, X., Hoff, P. D. and Yeung, K. Y. (2012). Fast inference for the latent space network model using a case-control approximate likelihood. J. Comput. Graph. Statist. 21 901-919.
[184] Rapoport, A. (1979/80). A probabilistic approach to networks. Soc. Netw. 2 1-18.
[185] Rastelli, R., Friel, N. and Raftery, A. E. (2016). Properties of latent variable network models. Netw. Sci. 4 407-432.
[186] Ravikumar, P., Wainwright, M. J. and Lafferty, J. D. (2010). High-dimensional Ising model selection using \(\ell_1\)-regularized logistic regression. Ann. Statist. 38 1287-1319. · Zbl 1189.62115
[187] Richardson, M. and Domingos, P. (2006). Markov logic networks. Mach. Learn. 62 107-136.
[188] Rinaldo, A., Fienberg, S. E. and Zhou, Y. (2009). On the geometry of discrete exponential families with application to exponential random graph models. Electron. J. Stat. 3 446-484. · Zbl 1326.62071
[189] Rinaldo, A., Petrovic, S. and Fienberg, S. E. (2013). Maximum likelihood estimation in the \(\beta \)-model. Ann. Statist. 41 1085-1110. · Zbl 1292.62052
[190] Robins, G. and Pattison, P. (2001). Random graph models for temporal processes in social networks. J. Math. Sociol. 25 5-41. · Zbl 0986.91048
[191] Robins, G. L., Pattison, P. E. and Wang, P. (2009). Closure, connectivity and degree distributions: Exponential random graph (p*) models for directed social networks. Soc. Netw. 31 105-117.
[192] Robins, G., Pattison, P. and Wasserman, S. (1999). Logit models and logistic regressions for social networks. III. Valued relations. Psychometrika 64 371-394. · Zbl 1365.62459
[193] Rohe, K., Chatterjee, S. and Yu, B. (2011). Spectral clustering and the high-dimensional stochastic blockmodel. Ann. Statist. 39 1878-1915. · Zbl 1227.62042
[194] Rolls, D. A., Wang, P., Jenkinson, R., Pattison, P. E., Robins, G. L., Sacks-Davis, R., Daraganova, G., Hellard, M. and McBryde, E. (2013). Modelling a disease-relevant contact network of people who inject drugs. Soc. Netw. 35 699-710.
[195] Rubin, D. B. (1976). Inference and missing data. Biometrika 63 581-592. · Zbl 0344.62034
[196] Salganik, M. J. and Heckathorn, D. D. (2004). Sampling and estimation in hidden populations using respondent-driven sampling. Sociol. Method. 34 193-239.
[197] Salter-Townshend, M. and Murphy, T. B. (2013). Variational Bayesian inference for the latent position cluster model for network data. Comput. Statist. Data Anal. 57 661-671. · Zbl 1365.62246
[198] Salter-Townshend, M. and Murphy, T. B. (2015). Role analysis in networks using mixtures of exponential random graph models. J. Comput. Graph. Statist. 24 520-538.
[199] Salter-Townshend, M., White, A., Gollini, I. and Murphy, T. B. (2012). Review of statistical network analysis: Models, algorithms, and software. Stat. Anal. Data Min. 5 260-264. · Zbl 07260329
[200] Schalk, G., McFarland, D. J., Hinterberger, T., Birbaumer, N. and Wolpaw, J. R. (2004). BCI2000: A general-purpose brain-computer interface (BCI) system. IEEE Trans. Biomed. Eng. 51 1034-1043.
[201] Schweinberger, M. (2011). Instability, sensitivity, and degeneracy of discrete exponential families. J. Amer. Statist. Assoc. 106 1361-1370. · Zbl 1233.62020
[202] Schweinberger, M. (2020). Consistent structure estimation of exponential-family random graph models with block structure. Bernoulli. To appear. · Zbl 1466.62348
[203] Schweinberger, M. and Handcock, M. S. (2015). Local dependence in random graph models: Characterization, properties and statistical inference. J. R. Stat. Soc. Ser. B. Stat. Methodol. 77 647-676. · Zbl 1414.62096
[204] Schweinberger, M. and Luna, P. (2018). HERGM: Hierarchical exponential-family random graph models. J. Stat. Softw. 85 1-39.
[205] Schweinberger, M. and Snijders, T. A. B. (2003). Settings in social networks: A measurement model. In Sociological Methodology (R. M. Stolzenberg, ed.) 33 307-341 10. Basil Blackwell, Boston & Oxford.
[206] Schweinberger, M. and Stewart, J. (2020). Concentration and consistency results for canonical and curved exponential-family models of random graphs. Ann. Statist. To appear. · Zbl 1439.05206
[207] Sengupta, S. and Chen, Y. (2018). A block model for node popularity in networks with community structure. J. R. Stat. Soc. Ser. B. Stat. Methodol. 80 365-386. · Zbl 1458.62166
[208] Sewell, D. K. and Chen, Y. (2015). Latent space models for dynamic networks. J. Amer. Statist. Assoc. 110 1646-1657. · Zbl 1373.62580
[209] Shalizi, C. R. and Rinaldo, A. (2013). Consistency under sampling of exponential random graph models. Ann. Statist. 41 508-535. · Zbl 1269.91066
[210] Simpson, S. L., Bowman, F. D. and Laurienti, P. J. (2013). Analyzing complex functional brain networks: Fusing statistics and network science to understand the brain. Stat. Surv. 7 1-36. · Zbl 1279.92021
[211] Simpson, S. L., Hayasaka, S. and Laurienti, P. J. (2011). Exponential random graph modeling for complex brain networks. PLoS ONE 6 e20039.
[212] Simpson, S. L., Moussa, M. N. and Laurienti, P. J. (2012). An exponential random graph modeling approach to creating group-based representative whole-brain connectivity networks. NeuroImage 60 1117-1126.
[213] Sinke, M. R. T., Dijkhuizen, R. M., Caimo, A., Stam, C. J. and Otte, W. M. (2016). Bayesian exponential random graph modeling of whole-brain structural networks across lifespan. NeuroImage 135 79-91.
[214] Slaughter, A. J. and Koehly, L. M. (2016). Multilevel models for social networks: Hierarchical Bayesian approaches to exponential random graph modeling. Soc. Netw. 44 334-345.
[215] Smith, T. W., Marsden, P., Hout, M. and Kim, J. (1972-2016). General Social Surveys Technical Report NORC at the Univ. Chicago.
[216] Snijders, T. A. B. (2002). Markov chain Monte Carlo estimation of exponential random graph models. J. Soc. Struct. 3 1-40.
[217] Snijders, T. A. B. (2010). Conditional marginalization for exponential random graph models. J. Math. Sociol. 34 239-252. · Zbl 1201.91170
[218] Snijders, T. A. B. and Bosker, R. J. (2012). Multilevel Analysis: An Introduction to Basic and Advanced Multilevel Modeling, 2nd ed. Sage Publications, Los Angeles, CA. · Zbl 1296.62008
[219] Snijders, T. A. B. and van Duijn, M. A. J. (2002). Conditional maximum likelihood estimation under various specifications of exponential random graph models. In Contributions to Social Network Analysis, Information Theory, and Other Topics in Statistics; A Festschrift in Honour of Ove Frank (J. Hagberg, ed.) 117-134. Dept. Statistics, Univ. Stockholm.
[220] Snijders, T. A. B., Pattison, P. E., Robins, G. L. and Handcock, M. S. (2006). New specifications for exponential random graph models. Sociol. Method. 36 99-153.
[221] Stein, M. L. (1999). Interpolation of Spatial Data. Springer Series in Statistics. Springer, New York. · Zbl 0924.62100
[222] Stewart, J., Schweinberger, M., Bojanowski, M. and Morris, M. (2019). Multilevel network data facilitate statistical inference for curved ERGMs with geometrically weighted terms. Soc. Netw. 59 98-119.
[223] Strauss, D. (1986). On a general class of models for interaction. SIAM Rev. 28 513-527. · Zbl 0612.60066
[224] Strauss, D. and Ikeda, M. (1990). Pseudolikelihood estimation for social networks. J. Amer. Statist. Assoc. 85 204-212.
[225] Suesse, T. (2012). Marginalized exponential random graph models. J. Comput. Graph. Statist. 21 883-900.
[226] Talagrand, M. (1996). A new look at independence. Ann. Probab. 24 1-34. · Zbl 0858.60019
[227] Tang, M., Sussman, D. L. and Priebe, C. E. (2013). Universally consistent vertex classification for latent positions graphs. Ann. Statist. 41 1406-1430. · Zbl 1273.62147
[228] Thiemichen, S. and Kauermann, G. (2017). Stable exponential random graph models with non-parametric components for large dense networks. Soc. Netw. 49 67-80.
[229] Thiemichen, S., Friel, N., Caimo, A. and Kauermann, G. (2016). Bayesian exponential random graph models with nodal random effects. Soc. Netw. 46 11-28.
[230] Thompson, S. K. (2012). Sampling, 3rd ed. Wiley Series in Probability and Statistics. Wiley, Hoboken, NJ. · Zbl 1267.62020
[231] Thompson, S. and Frank, O. (2000). Model-based estimation with link-tracing sampling designs. Surv. Methodol. 26 87-98.
[232] van Duijn, M. A. J. (1995). Estimation of a random effects model for directed graphs. In Toeval Zit Overal: Programmatuur voor Random-Coëffciënt Modellen (T. A. B. Snijders, B. Engel, J. C. Van Houwelingen, A. Keen, G. J. Stemerdink and M. Verbeek, eds.) 113-131. IEC ProGAMMA, Groningen.
[233] Van Duijn, M. A. J., Gile, K. and Handcock, M. S. (2009). A framework for the comparison of maximum pseudo-likelihood and maximum likelihood estimation of exponential family random graph models. Soc. Netw. 31 52-62.
[234] van Duijn, M. A. J., Snijders, T. A. B. and Zijlstra, B. J. H. (2004). \(p_2\): A random effects model with covariates for directed graphs. Stat. Neerl. 58 234-254. · Zbl 1050.62117
[235] Veitch, V. andRoy, D. M. (2015). The class of random graphs arising from exchangeable random measures. Preprint. Available at arXiv:1512.03099.
[236] Veitch, V. and Roy, D. M. (2019). Sampling and estimation for (sparse) exchangeable graphs. Ann. Statist. 47 3274-3299. · Zbl 1435.62128
[237] Wang, J. and Atchadé, Y. F. (2014). Approximate Bayesian computation for exponential random graph models for large social networks. Comm. Statist. Simulation Comput. 43 359-377. · Zbl 1323.65007
[238] Wang, P., Robins, G. and Pattison, P. (2006). PNet. program for the simulation and estimation of exponential random graph (p∗) models. Melbourne School of Psychological Sciences, University of Melbourne.
[239] Wang, P., Robins, G., Pattison, P. and Lazega, E. (2013). Exponential random graph models for multilevel networks. Soc. Netw. 35 96-115.
[240] Wang, P., Robins, G., Pattison, P. and Lazega, E. (2016a). Social selection models for multilevel networks. Soc. Netw. 44 346-362.
[241] Wang, C., Butts, C. T., Hipp, J. R., Jose, R. and Lakon, C. M. (2016b). Multiple imputation for missing edge data: A predictive evaluation method with application to add health. Soc. Netw. 45 89-98.
[242] Wang, Y., Fang, H., Yang, D., Zhao, H. and Deng, M. (2018). Network clustering analysis using mixture exponential-family random graph models and its application in genetic interaction data. IEEE/ACM Trans. Comput. Biol. Bioinform..
[243] Wasserman, S. and Faust, K. (1994). Social Network Analysis: Methods and Applications. Cambridge Univ. Press, Cambridge. · Zbl 0926.91066
[244] Wasserman, S. and Pattison, P. (1996). Logit models and logistic regressions for social networks. I. An introduction to Markov graphs and \(p\). Psychometrika 61 401-425. · Zbl 0866.92029
[245] Willinger, W., Alderson, D. and Doyle, J. C. (2009). Mathematics and the Internet: A source of enormous confusion and great potential. Notices Amer. Math. Soc. 56 586-599. · Zbl 1168.90004
[246] Wyatt, D., Choudhury, T. and Bilmes, J. (2008). Learning hidden curved exponential random graph models to infer face-to-face interaction networks from situated speech data. In Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence 732-738.
[247] Xiang, R. and Neville, J. (2011). Relational learning with one network: An asymptotic analysis. In Proceedings of the 14th International Conference on Artificial Intelligence and Statistics (AISTATS) 1-10.
[248] Yan, T., Leng, C. and Zhu, J. (2016). Asymptotics in directed exponential random graph models with an increasing bi-degree sequence. Ann. Statist. 44 31-57. · Zbl 1331.62110
[249] Yan, T., Qin, H. and Wang, H. (2016). Asymptotics in undirected random graph models parameterized by the strengths of vertices. Statist. Sinica 26 273-293. · Zbl 1419.62046
[250] Yan, T., Zhao, Y. and Qin, H. (2015). Asymptotic normality in the maximum entropy models on graphs with an increasing number of parameters. J. Multivariate Anal. 133 61-76. · Zbl 1304.62038
[251] Yan, T., Jiang, B., Fienberg, S. E. and Leng, C. (2019). Statistical inference in a directed network model with covariates. J. Amer. Statist. Assoc. 114 857-868. · Zbl 1420.62105
[252] Yang, X., Rinaldo, A. and Fienberg, S. E. (2014). Estimation for dyadic-dependent exponential random graph models. J. Algebr. Stat. 5 39-63. · Zbl 1344.05130
[253] Yang, E., Ravikumar, P., Allen, G. I. and Liu, Z. (2015). Graphical models via univariate exponential family distributions. J. Mach. Learn. Res. 16 3813-3847. · Zbl 1351.62111
[254] Yin, M., Rinaldo, A. and Fadnavis, S. (2016). Asymptotic quantization of exponential random graphs. Ann. Appl. Probab. 26 3251-3285. · Zbl 1356.05138
[255] Zappa, P. and Lomi, A. (2015). The analysis of multilevel networks in organizations: Models and empirical tests. Organ. Res. Methods 18 542-569.
[256] Zhang, A. Y. and Zhou, H. H. (2016). Minimax rates of community detection in stochastic block models. Ann. Statist. 44 2252-2280. · Zbl 1355.60125
[257] Zhao, Y. · Zbl 1257.62095
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.