×

zbMATH — the first resource for mathematics

Modeling, simulation, and optimization of geothermal energy production from hot sedimentary aquifers. (English) Zbl 1453.86004
Summary: Geothermal district heating development has been gaining momentum in Europe with numerous deep geothermal installations and projects currently under development. With the increasing density of geothermal wells, questions related to the optimal and sustainable reservoir exploitation become more and more important. A quantitative understanding of the complex thermo-hydraulic interaction between tightly deployed geothermal wells in heterogeneous temperature and permeability fields is key for a maximum sustainable use of geothermal resources. Motivated by the geological settings of the Upper Jurassic aquifer in the Greater Munich region, we develop a computational model based on finite element analysis and gradient-free optimization to simulate groundwater flow and heat transport in hot sedimentary aquifers, and numerically investigate the optimal positioning and spacing of multi-well systems. Based on our numerical simulations, net energy production from deep geothermal reservoirs in sedimentary basins by smart geothermal multi-well arrangements provides significant amounts of energy to meet heat demand in highly urbanized regions. Our results show that taking into account heterogeneous permeability structures and a variable reservoir temperature may drastically affect the results in the optimal configuration. We demonstrate that the proposed numerical framework is able to efficiently handle generic geometrical and geological configurations, and can be thus flexibly used in the context of multi-variable optimization problems. Hence, this numerical framework can be used to assess the extractable geothermal energy from heterogeneous deep geothermal reservoirs by the optimized deployment of smart multi-well systems.
MSC:
86-08 Computational methods for problems pertaining to geophysics
86-04 Software, source code, etc. for problems pertaining to geophysics
86A05 Hydrology, hydrography, oceanography
76M10 Finite element methods applied to problems in fluid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Limberger, J.; Boxem, T.; Pluymaekers, M.; Bruhn, D.; Manzella, A.; Calcagno, P.; Beekman, F.; Cloetingh, S.; van Wees, J-D, Geothermal energy in deep aquifers: a global assessment of the resource base for direct heat utilization, Renew. Sustain. Energy Rev., 82, 961-975 (2018)
[2] Moeck, IS, Catalog of geothermal play types based on geologic controls, Renew. Sustain. Energy Rev., 37, 867-882 (2014)
[3] Bertani, R.; Dumas, P.; Bonafin, J.; Flóvenz, OG; Jónsdóttir, B.; Manzella, A.; Donato, A.; Gola, G.; Santilano, A.; Trumpy, E.; Simsek, S.; van Wees, J-D; Pluymaekers, M.; Veldkamp, H.; van Gessel, S.; Bonté, D.; Rybach, L.; Sanner, B.; Angelino, L., Perspectives for Geothermal Energy in Europe (2017), New York: World Scientific Publishing Europe Ltd., New York
[4] Ungemach, P., Antics, M.: Assessment of Deep Seated Geothermal Reservoirs in Selected European Sedimentary Environments. In: Proceedings of the World Geothermal Congress (2015)
[5] Antics, M., Bertani, R., Sanner, B.: Summary of EGC 2016 Country Update Reports on Geothermal Energy in Europe. In: Proceedings of the European Geothermal Congress (2016)
[6] Antics, M., Sanner, B.: Status of Geothermal Energy Use and Resources in Europe. In: Proceedings of the European Geothermal Congress (2007)
[7] Hurter, S.; Schellschmidt, R., Atlas of geothermal resources in Europe, Geothermics, 32, 4, 779-787 (2003)
[8] Lund, JW; Boyd, TL, Direct utilization of geothermal energy 2015 worldwide review, Geothermics, 60, 66-93 (2016)
[9] Agemar, T.; Alten, J-A; Ganz, B.; Kuder, J.; Kühne, K.; Schumacher, S.; Schulz, R., The Geothermal Information System for Germany - GeotIS, Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, 165, 2, 129-144 (2014)
[10] Agemar, T.; Weber, J.; Schulz, R., Deep geothermal energy production in Germany, Energies, 7, 7, 4397-4416 (2014)
[11] Dussel, M.; Lüschen, E.; Thomas, R.; Agemar, T.; Fritzer, T.; Sieblitz, S.; Huber, B.; Birner, J.; Schulz, R., Forecast for thermal water use from Upper Jurassic carbonates in the Munich region (South German Molasse Basin), Geothermics, 60, 13-30 (2016)
[12] Weber, J., Born, H., Moeck, I.: Geothermal Energy Use, Country Update for Germany 2016 - 2018. In: Proceedings of the European Geothermal Congress (2019)
[13] Alten, J.-A., Thorsten, A., Gramenz, J., Tribbensee, M.: GeotIS: Free Access to Maps and 3D Models for Geothermal Project Planning in Germany. In: Proceedings of the European Geothermal Congress (2019)
[14] Hecht, C., Pletl, C.: Das Verbundprojekt GRAME - Wegweiser für eine geothermische Wärmeversorgung urbaner Ballungsräume. Geothermische Energie, 82(2) (2015)
[15] Buness, H.; Von Hartmann, H.; Lüschen, E.; Meneses Rioseco, E.; Wawerzinek, B.; Ziesch, J.; Thomas, R., GeoParaMol: Eine Integration verschiedener Methoden zur Reduzierung des Fündigkeitsrisikos in der bayrischen Molasse, Geothermische Energie, 85, 22-23 (2016)
[16] Meneses Rioseco, E., Ziesch, J., Wawerzinek, B., Von Hartmann, H., Thomas, R., Buness, H.: 3-D Geothermal Reservoir Modeling of the Upper Jurassic Carbonate Aquifer in the City of Munich (Germany) under the Thermal-Hydraulic Influence of Optimized Geothermal Multi-Well Patterns - Project GeoParaMol. In: Proceedings of the 43rd Workshop on Geothermal Reservoir Engineering (2018)
[17] Meneses Rioseco, E., Ziesch, J., Von Hartmann, H., Buness, H.: Geothermal reservoir modelling and simulation of the Upper Jurassic aquifer for district heating in the city of Munich (Germany). In: Proceedings of the European Geothermal Congress (2019)
[18] Willems, CJL; Nick, HM; Weltje, GJ; Bruhn, DF, An evaluation of interferences in heat production from low enthalpy geothermal doublets systems, Energy, 135, 500-512 (2017)
[19] Willems, CJL; Nick, HM; Goense, T.; Bruhn, DF, The impact of reduction of doublet well spacing on the net present value and the life time of fluvial hot sedimentary aquifer doublets, Geothermics, 68, 54-66 (2017)
[20] Park, H-Y; Yang, C.; Al-Aruri, AD; Fjerstad, PA, Improved decision making with new efficient workflows for well placement optimization, J. Pet. Sci. Eng., 152, 81-90 (2017)
[21] Sayyafzadeh, M., Reducing the computation time of well placement optimisation problems using self-adaptive metamodelling, J. Pet. Sci. Eng., 151, 143-158 (2017)
[22] Dossary, MAA; Nasrabadi, H., Well placement optimization using imperialist competitive algorithm, J. Pet. Sci. Eng., 147, 237-248 (2016)
[23] Liu, D.; Sun, J., The Control Theory and Application for Well Pattern Optimization of Heterogeneous Sandstone Reservoirs (2017), Berlin Heidelberg: Petroleum Industry Press and Springer-Verlag, Berlin Heidelberg
[24] Li, T.; Shiozawa, S.; McClure, MW, Thermal breakthrough calculations to optimize design of a multiple-stage Enhanced Geothermal System, Geothermics, 64, 455-465 (2016)
[25] Shook, GM, Predicting thermal breakthrough in heterogeneous media from tracer tests, Geothermics, 30, 6, 573-589 (2001)
[26] Blöcher, MG; Zimmermann, G.; Moeck, I.; Brandt, W.; Hassanzadegan, A.; Magri, F., 3D numerical modeling of hydrothermal processes during the lifetime of a deep geothermal reservoir, Geofluids, 10, 3, 406-421 (2010)
[27] O’Sullivan, MJ; Pruess, K.; Lippmann, MJ, State of the art of geothermal reservoir simulation, Geothermics, 30, 4, 395-429 (2001)
[28] Bödvarsson, GS; Tsang, CF, Injection and thermal breakthrough in fractured geothermal reservoirs, Journal of Geophysical Research: Solid Earth, 87, B2, 1031-1048 (1982)
[29] O’Sullivan, MJ, Geothermal reservoir simulation, Int. J. Energy Res., 9, 3, 319-332 (1985)
[30] Crooijmans, RA; Willems, CJL; Nick, HM; Bruhn, DF, The influence of facies heterogeneity on the doublet performance in low-enthalpy geothermal sedimentary reservoirs, Geothermics, 64, 209-219 (2016)
[31] Saeid, S.; Al-Khoury, R.; Nick, HHM; Barends, F., Experimentalnumerical study of heat flow in deep low-enthalpy geothermal conditions, Renew. Energy, 62, 716-730 (2014)
[32] Saeid, S.; Al-Khoury, R.; Nick, HH; Hicks, MA, A prototype design model for deep low-enthalpy hydrothermal systems, Renew. Energy, 77, 408-422 (2015)
[33] Rostamian, A.; Jamshidi, S.; Zirbes, E., The development of a novel multi-objective optimization framework for non-vertical well placement based on a modified non-dominated sorting genetic algorithm-II, Comput. Geosci., 23, 1065-1085 (2019) · Zbl 1425.90146
[34] Zhang, L.; Deng, Z.; Zhang, K.; Long, T.; Desbordes, J.; Sun, H.; Yang, Y., Well-placement optimization in an enhanced geothermal system based on the fracture continuum method and 0-1 programming, Energies, 12, 709 (2019)
[35] Kahrobaei, S., Fonseca, R.M., Willems, C.J.L., Wilschut, F., van Wees, J.D.: Regional scale geothermal field development optimization under geological uncertainties. In: Proceedings of the European Geothermal Congress (2019)
[36] McDonald, MG; Harbaugh, AW, The history of MODFLOW, Ground Water, 41, 280-283 (2005)
[37] Keilegavlen, E., Berge, R., Fumagalli, A., Starnoni, M., Stefansson, I., Varela, J., Berre, I.: Porepy: An open-source software for simulation of multiphysics processes in fractured porous media (2019)
[38] Alnæs, MS; Blechta, J.; Hake, J.; Johansson, A.; Kehlet, B.; Logg, A.; Richardson, C.; Ring, J.; Rognes, ME; Wells, GN, The FEniCS Project Version 1.5, Archive of Numerical Software, 3, 100 (2015)
[39] Blatt, M.; Burchardt, A.; Dedner, A.; Engwer, C.; Fahlke, J.; Flemisch, B.; Gersbacher, C.; Gräser, C.; Gruber, F.; Grüninger, C.; Kempf, D.; Klöfkorn, R.; Malkmus, T.; Müthing, S.; Nolte, M.; Piatkowski, M.; Sander, O., The distributed and unified numerics environment, version 2.4, Archive of Numerical Software, 4, 100, 13-29 (2016)
[40] Arndt, D.; Bangerth, W.; Clevenger, TC; Davydov, D.; Fehling, M.; Garcia-Sanchez, D.; Harper, G.; Heister, T.; Heltai, L.; Kronbichler, M.; Kynch, RM; Maier, M.; Pelteret, J-P; Turcksin, B.; Wells, D., The deal.II library, version 9.1, J. Numer. Math., 27, 203-213 (2019) · Zbl 1435.65010
[41] Bilke, L.; Flemisch, B.; Kalbacher, T.; Kolditz, O.; Rainer, H.; Nagel, T., Development of open-source porous media simulators: principles and experiences, Transp. Porous Media, 130, 1, 337-361 (2019)
[42] Diersch, H-JG, FEFLOW. Finite Element Modeling of Flow, Mass and Heat Transport in Porous and Fractured Media (2014), London: Springer Science + Business Media; Springer Heidelberg Dordrecht, London
[43] Ghasemizadeh, R.; Yu, X.; Butscher, C.; Hellweger, F.; Padilla, I.; Alshawabkeh, A., Equivalent porous media (EPM) simulation of groundwater hydraulics and contaminant transport in karst aquifers, PLOS ONE, 10, 9, 1-21 (2015)
[44] Birner, J.: Hydrogeologisches Modell des Malmaquifers im Süddeutschen Molassebecken - Hydrogeological model of the Malm aquifer in the South German Molasse Basin. Ph.D. Thesis, Freie Universität Berlin (2013)
[45] Wilbrandt, U.; Bartsch, C.; Ahmed, N.; Alia, N.; Anker, F.; Blank, L.; Caiazzo, A.; Ganesan, S.; Giere, S.; Matthies, G.; Meesala, R.; Shamim, A.; Venkatesan, J.; John, V., Parmoon – a modernized program package based on mapped finite elements, Comput. Math. Appl., 74, 74-88 (2016) · Zbl 1375.65158
[46] Rybach, L.: Geothermal systems, conductive heat flow, geothermal anomalies. In: Geothermal Systems: Principles and case histories, pp. 3-31. John Wiley & Sons (1981)
[47] Haenel, R.; Rybach, L.; Stegena, L., Fundamentals of geothermics (1988), Netherlands: Springer, Netherlands
[48] Stober, I.; Bucher, K., Geothermal Energy. From Theoretical Models to Exploration and Development (2013), Berlin Heidelberg: Springer-Verlag, Berlin Heidelberg
[49] Ernst, H. (ed.): Geothermal Energy Systems: Exploration, Development, and Utilization. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. ISBN 978-3-527-40831-3 (2010)
[50] Förster, A., Merriam, D.F.: Geothermics in Basin Analysis, Computer Applications in the Earth Sciences. Springer US; Kluwer Academic/Plenum Publishers. ISBN 978-1-4613-7154-0 (1999)
[51] Beardsmore, G.R., Cull, J.P.: Crustal Heat Flow: a Guide to Measurement and Modelling, Cambridge University Press (2001)
[52] Haenel, R.; Stegena, L.; Rybach, L., Handbook of Terrestrial Heat-Flow Density dDtermination: with Guidelines and Recommendations of the International Heat Flow Commission (2012), Netherlands: Springer, Netherlands
[53] Agemar, T.; Schellschmidt, R.; Schulz, R., Subsurface temperature distribution in Germany, Geothermics, 44, 65-77 (2012)
[54] Schütz, F.; Winterleitner, G.; Huenges, E., Geothermal exploration in a sedimentary basin: new continuous temperature data and physical rock properties from northern Oman, Geothermal Energy, 6, 1, 5 (2018)
[55] Kukkonen, IT; Jõeleht, A., Weichselian temperatures from geothermal heat flow data, J. Geophys. Res., 108, 2163, B3 (2003)
[56] Förster, A., Analysis of borehole temperature data in the Northeast German Basin: continuous logs versus bottom-hole temperatures, Pet. Geosci., 7, 241-254 (2001)
[57] Koch, A., Jorand, R., Vogt, C., Arnold, J.-C., Mottaghy, D., Pechnig, R., Clauser, C.: Erstellung statistisch abgesicherter termischer hydraulischer Gesteinseigenschaften für den flachen und tiefen Untergrund in Deutschland. Phase 2 - Westliches Nordrhein-Westfalen und bayerisches Molassebecken, RWTH Aachen (2009)
[58] Fuchs, S.; Förster, A., Rock thermal conductivity of Mesozoic geothermal aquifers in the Northeast German Basin, Chemie der Erde - Geochemistry, 70, 13-22 (2010)
[59] Clauser, C., Koch, A., Hartmann, A., Jorand, R., Rath, V., Wolf, A., Mottaghy, D., Pechnig, R.: Erstellung statistisch abgesicherter termischer hydraulischer Gesteinseigenschaften für den flachen und tiefen Untergrund in Deutschland. Phase 1 - Westliche Molasse und nördlich angrenzendes Süddeutsches Schichtstufenland, RWTH Aachen (2006)
[60] Cermak, V., Huckenholz, H.-G., Rybach, L., Schmid, R., Schopper, J.-R., Schuch, M., Stöfler, D, Wohlenberg, J. In: Angenheister, G. (ed.): Physical Properties of Rocks, vol. 1a. Springer, Heidelberg (1982)
[61] Sebastian, H.; Götz, AE; Sass, I., Reservoir characterization of the Upper Jurassic geothermal target formations (Molasse Basin, Germany): role of thermofacies as exploration tool, Geothermal Energy Science, 3, 41-49 (2015)
[62] Labus, M.; Labus, K., Thermal conductivity and diffusivity of fine-grained sedimentary rocks, J. Therm. Anal. Calorim., 132, 3, 1669-1676 (2018)
[63] Clauser, C., Huenges, E.: Thermal Conductivity of Rocks and Minerals. In: Rock Physics & Phase Relations, pp. 105-126. American Geophysical Union (AGU) (2013)
[64] Fuchs, S., The variability of rock thermal properties in sedimentary basins and the impact on temperature modelling – a Danish example, Geothermics, 76, 1-14 (2018)
[65] Mraz, E.; Wolfgramm, M.; Moeck, I.; Thuro, K., Detailed fluid inclusion and stable isotope analysis on deep carbonates from the North Alpine Foreland Basin to constrain paleofluid evolution, Geofluids, 2019, 23 (2019)
[66] Jobmann, M., Schulz, R.: Hydrogeothermische Energiebilanz und Grundwasserhaushalt des Malmkarstes im süddeutschen Molassebecken, Niedersächsisches Landesamt für Bodenforschung. Archive Nr. 105040 (1989)
[67] Dussel, M., Moeck, I., Wolfgramm, M., Straubinger, R.: Characterization of a Deep Fault Zone in Upper Jurassic Carbonates of the Northern Alpine Foreland Basin for Geotherma Production (South Germany). In: Proceedings of the 43rd Workshop on Geothermal Reservoir Engineering (2018)
[68] Lüschen, E.; Wolfgramm, M.; Fritzer, T.; Dussel, M.; Thomas, R.; Schulz, R., 3D seismic survey explores geothermal targets for reservoir characterization at Unterhaching, Munich, Germany, Geothermics, 50, 167-179 (2014)
[69] Haenel, R., Kleefeld, M., Koppe, I.: Geothermisches Energiepotential, Pilotstudie: Abschätzung der geothermischen Energievorräte an ausgewählten Beispielen in der Bundesrepublik Deutschland, Final report (Abschlussberricht), Bericht NLfB, Archive Nr. 96276, Bd. I-IV. Niedersächsisches Landesamt für Bodenforschung, Hannover, Germany (1984)
[70] Haenel, R., Staroste, E.: Atlas of Geothermal Resources in the European Community, Austria and Switzerland, Niedersächsisches Landesamt für Bodenforschung, Hannover, Germany (1988)
[71] Haenel, ER, The Urach geothermal project (Swabian Alb, Germany) (1982), Stuttgart, Germany: Schweizerbart Science Publishers, Stuttgart, Germany
[72] Hurter, S., Haenel, R.: Atlas of Geothermal Resources in Europe: Planning Exploration and Investments. In: Proceedings of the World Geothermal Congress (2000)
[73] Majorowicz, J.; Wybraniec, S., New terrestrial heat flow map of Europe after regional paleoclimatic correction application, Int. J. Earth Sci., 100, 4, 881-887 (2011)
[74] Cacace, M.; Scheck-Wenderoth, M.; Noack, V.; Cherubini, Y.; Schellschmidt, R., Modelling the surface heat flow distribution in the area of Brandenburg (Northern Germany), Energy Procedia, 40, 545-553 (2013)
[75] Noack, V.; Cherubini, Y.; Scheck-Wenderoth, M.; Lewerenz, B.; Höding, T.; Simon, A.; Moeck, I., Assessment of the present-day thermal field (NE German Basin) - inferences from 3D modelling, Chemie der Erde - Geochemistry, 70, 47-62 (2010)
[76] Fritzer, T.: Bayerischer Geothermieatlas - Hydrothermale Energiegewinnung: Technik, wirtschaftliche Aspekte, Risiken, hydrothermale Grundwasserleiter in Bayern, Untergrundtemperaturen in Bayern. Bayerisches Staatsministerium für Wirtschaft, Infrastruktur, Verkehr und Technologie, Munich (2010)
[77] Agar, SM; Geiger, S., Fundamental controls on fluid flow in carbonates: current workflows to emerging technologies, Geol. Soc. Lond., Spec. Publ., 406, 1, 1-59 (2015)
[78] Agar, SM; Hampson, GJ, Fundamental controls on flow in carbonates: an introduction, Pet. Geosci., 20, 1, 3-5 (2014)
[79] Cacas, MC; Daniel, JM, Nested geological modelling of naturally fractured reservoirs, Pet. Geosci., 7, 5, 43-52 (2001)
[80] Beyer, D.; Kunkel, C.; Aehnelt, M.; Pudlo, D.; Voigt, T.; Nover, G.; Gaupp, R., Influence of depositional environment and diagenesis on petrophysical properties of clastic sediments (Buntsandstein of the Thuringian Syncline, Central Germany), Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, 165, 3, 345-365 (2014)
[81] Dethlefsen, F.; Ebert, M.; Dahmke, A., A geological database for parameterization in numerical modeling of subsurface storage in northern Germany, Environmental Earth Sciences, 71, 5, 2227-2244 (2014)
[82] Kuder, J.; Binot, F.; Hübner, W.; Orilski, J.; Wonik, T.; Schulz, R., Für die Geothermie wichtige hydraulische Parameter von Gesteinen des Valangin und der Bückeberg-Formation (Wealden) in Nordwestdeutschland, Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, 165, 3, 455-467 (2014)
[83] Kunkel, C.; Aehnelt, M.; Pudlo, D.; Kukowski, N.; Totsche, KU; Gaupp, R., Subsurface aquifer heterogeneities of Lower Triassic clastic sediments in central Germany, Mar. Pet. Geol., 97, 209-222 (2018)
[84] Olivarius, M.; Weibel, R.; Hjuler, ML; Kristensen, L.; Mathiesen, A.; Nielsen, LH; Kjøller, C., Diagenetic effects on porosity-permeability relationships in red beds of the Lower Triassic Bunter Sandstone Formation in the North German Basin, Sediment. Geol., 321, 139-153 (2015)
[85] Stober, I., Strömungsverhalten in Festgesteinsaquiferen mit Hilfe von Pump- und Injektionsversuchen (1986), Stuttgart, Germany: Schweizerbart Science Publishers, Stuttgart, Germany
[86] Stober, I.; Jodocy, M.; Hintersberger, B., Comparison of hydraulic conductivities determined with different methods in the Upper Jurassic of the southwest German Molasse Basin, Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, 164, 4, 663-679 (2013)
[87] Ortiz Rojas, AE; Dussel, M.; Moeck, I., Borehole geophysical characterisation of a major fault zone in the geothermal Unterhaching gt 2 well, South German Molasse Basin, Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, 169, 3, 445-463 (2018)
[88] Frisch, H.; Huber, B., Versuch einer Bilanzierung des Thermalwasservorkommens im Malmkarst des süddeutschen Molassebeckens, Hydrogeologie und Umwelt, 20, 25-43 (2000)
[89] Brinkman, HC, A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles, Appl. Sci. Res., 1, 1, 27-34 (1949) · Zbl 0041.54204
[90] Popov, P.; Efendiev, Y.; Qin, G., Multiscale modeling and simulations of flows in naturally fractured karst reservoirs, Commun. Comput. Phys., 6, 1, 162-184 (2009) · Zbl 1364.76225
[91] Joodi, A.; Sizaret, S.; Binet, S.; A., B.; Albric, P.; Lepiller, M., Development of a Darcy-Brinkman model to simulate water flow and tracer transport in a heterogeneous karstic aquifer (Val d’Orl,ans, France), Hydrogeol. J., 18, 295-309 (2009)
[92] Willems, C.J.L., Goense, T., Nick, H.M., Bruhn, D.F.: The Relation Between Well Spacing and Net Present Value in Fluvial Hot Sedimentary Aquifer Geothermal Doublets: a West Netherlands Basin Case Study. In: Proceedings of the 41st Workshop on Geothermal Resevoir Engineering (2016)
[93] Peskin, CS, The immersed boundary method, Acta Numerica, 11, 1, 479-517 (2002) · Zbl 1123.74309
[94] D’Angelo, C., Finite element approximation of elliptic problems with Dirac measure terms in weighted spaces: applications to one- and three-dimensional coupled problems, SIAM J. Numer. Anal., 50, 1, 194-215 (2012) · Zbl 1246.65215
[95] Cattaneo, L.; Zunino, P., A computational model of drug delivery through microcirculation to compare different tumor treatments, International Journal for Numerical Methods in Biomedical Engineering, 30, 11, 1347-1371 (2014)
[96] Scheidegger, AE, General theory of dispersion in porous media, Journal of Geophysical Research (1896-1977), 66, 10, 3273-3278 (1961)
[97] Ciarlet, PG, The finite element method for elliptic problems (2002), Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA
[98] Ern, A.; Guermond, J-L, Theory and practice of finite elements (2004), New York: Springer-Verlag, New York
[99] Blank, L.; Caiazzo, A.; Chouly, F.; Lozinski, A.; Mura, J., Analysis of a stabilized penalty-free Nitsche method for the Brinkman, Stokes, and Darcy problems, ESAIM: Mathematical Modeling and Numerical Analysis (M2AN), 52, 6, 2149-2185 (2018) · Zbl 1417.65196
[100] Gablonsky, JM; Kelley, CT, A locally-biased form of the DIRECT algorithm, J. Global Optim., 21, 1, 27-37 (2001) · Zbl 1039.90049
[101] Ganesan, S., John, V., Matthies, G., Meesala, R., Shamim, A., Wilbrandt, U.: An Object Oriented Parallel Finite Element Scheme for Computations of PDEs: Design and Implementation. In: 2016 IEEE 23rd International Conference on High Performance Computing Workshops (HiPCW), pp. 106-115 (2016)
[102] Llanos, E.M., Zarrouk, S.J., Hogarth, R.A.: Simulation of the Habanero Enhanced Geothermal System (EGS), Australia. In: Proceedings of the World Geothermal Congress (2015)
[103] Vörös, R., Weidler, R., De Graaf, L., Wyborn, D.: Thermal modelling of long term circulation of multi-well development at the Cooper Basin hot fractured rock (HFR) project and current proposed scale-up program. In: Proceedings of the 32nd Workshop on Geothermal Reservoir Engineering (2007)
[104] Johnson, S.G.: The NLopt nonlinear-optimization package. http://github.com/stevengj/nlopt
[105] Geuzaine, C., Remacle, J.-F.: Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities. Int. J. Numer. Methods Eng. 79(11), 1309-1331 (2009) · Zbl 1176.74181
[106] Ahrens, J., Geveci, B., Law, C. In: Charles D. Hansen, Chris R. Johnson (eds.): 36-ParaView: An End-User Tool for Large Data Visualization. Visualization Handbook, pp. 717-731. Butterworth-Heinemann, Burlington (2005). isbn 978-0-12-387582-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.