×

zbMATH — the first resource for mathematics

Efficient solution techniques for two-phase flow in heterogeneous porous media using exact Jacobians. (English) Zbl 1453.65063
Summary: Two efficient and scalable numerical solution methods will be compared using exact Jacobians to solve the fully coupled Newton systems arising during fully implicit discretization of the equations for two-phase flow in porous media. These methods use algebraic multigrid (AMG) to solve the linear systems in every Newton step. The algebraic multigrid methods rely on (i) a Schur Complement Reduction (SCR-AMG) and (ii) a Constrained Pressure Residual method (CPR-AMG) to decouple elliptic and hyperbolic contributions. Both methods employ automatic differentiation (AD) to calculate exact Jacobians and are compared with finite difference (FD) approximations of the Jacobian. The superiority of AD is shown by several numerical test cases from the field of \(\mathrm{CO_2}\) geo-sequestration comprising two- and three-dimensional examples. A weak scaling test on JUQUEEN, a BlueGene/Q supercomputer, demonstrates the efficiency and scalability of both methods. To achieve maximum comparability and reproducibility, the Portable Extensible Toolkit for Scientific Computation (PETSc) is used as framework for the comparison of all solvers.
MSC:
65F08 Preconditioners for iterative methods
65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
65M55 Multigrid methods; domain decomposition for initial value and initial-boundary value problems involving PDEs
76S05 Flows in porous media; filtration; seepage
76T10 Liquid-gas two-phase flows, bubbly flows
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Aziz, K.; Settari, A., Petroleum Reservoir Simulation (1979), London: Applied Science Publishers, London
[2] Balay, S., Gropp, W.D., McInnes, L.C., Smith, B.F.: Modern Software Tools in Scientific Computing, Birkhȧuser Arge, E., Bruaset, A.M., Langtangen, H.P. (eds.) MA, Boston (1997)
[3] Balay, S., Abhyankar, S., Adams, M.F., Brown, J., Brune, P., Buschelman, K., Dalcin, L., Dener, A., Eijkhout, V., Gropp, W.D., Karpeyev, D., Kaushik, D., Knepley, M.G., May, D.A., McInnes, L.C., Mills, R.T., Munson, T., Rupp, K., Sanan, P., Smith, B.F., Zampini, S., Zhang, H., Zhang, H.: PETSc users manual Tech. Rep. ANL-95/11 - Revision 3.13, Argonne National Laboratory, Lemont, IL, USA, https://www.mcs.anl.gov/petsc (2020)
[4] Balay, S., Abhyankar, S., Adams, M.F., Brown, J., Brune, P., Buschelman, K., Dalcin, L., Dener, A., Eijkhout, V., Gropp, W.D., Karpeyev, D., Kaushik, D., Knepley, M.G., May, D.A., McInnes, L.C., Mills, R.T., Munson, T., Rupp, K., Sanan, P., Smith, B.F., Zampini, S., Zhang, H., Zhang, H.: PETSc Web page http://www.mcs.anl.gov/petsc (2020)
[5] Bastian, P.: Numerical Computation of Multiphase Flows in Porous Media. Habilitation thesis, Technische Fakultät, Christian-Albrechts-Universität Kiel https://conan.iwr.uni-heidelberg.de/data/people/peter/pdf/Bastian_habilitationthesis.pdf (1999)
[6] Bastian, P.; Helmig, R., Efficient fully-coupled solution techniques for two-phase flow in porous media: Parallel multigrid solution and large scale computations, Adv. Water Resour., 23, 3, 199-216 (1999)
[7] Bear, J.: Hydraulics of Groundwater McGraw-Hill New York (1979)
[8] Brooks, R.J., Corey, A.T.: Hydraulic Properties of Porous Media, vol 3 Colorado State University Hydrology Paper Fort Collins CO (1964)
[9] Buckley, SE; Leverett, MC, Mechanism of fluid displacement in sands, Transactions of the AIME, 146, 1, 107-116 (1942)
[10] Bui, QM; Elman, HC; Moulton, JD, Algebraic Multigrid Preconditioners for Multiphase Flow in Porous Media, SIAM Journal on Scientific Computing, 39, 5, S662-S680 (2017) · Zbl 1392.65024
[11] Burdine, NT, Relative Permeability Calculations from Pore-Size Distribution Data, Petroleum Transactions AIME, 198, 71-77 (1953)
[12] Büsing, H.: Efficient Solution Techniques for Multi-phase Flow in Porous Media. In: Lirkov I., Margenov, S., Large-Scale Scientific Computing, Springer International Publishing, Cham, Switzerland. doi:10.1007/978-3-319-73441-5_63, pp. 572-579 (2018) · Zbl 1445.76053
[13] Chavent, G., Jaffrè, J.: Mathematical Models and Finite Elementes for Reservoir Simulation North-Holland Amsterdam (1986) · Zbl 0603.76101
[14] Clauser, C.: Numerical Simulation of Reactive Flow in Hot Aquifers: SHEMAT and processing SHEMAT Springer Heidelberg-Berlin (2003)
[15] Darcy, H.: Les Fontaines Publiques de la Ville de Dijon Dalmont Paris (1856)
[16] Dawson, CN; Klíe, H.; Wheeler, MF; Woodward, CS, A parallel, implicit, cell-centered method for two-phase flow with a preconditioned Newton-K,rylov solver, Computational Geosciences, 1, 3-4, 215-249 (1997) · Zbl 0941.76062
[17] Douglas, JJr; Peaceman, D.; Rachford, HJr, A Method for Calculating Multi-Dimensional Immiscible Displacement, Transactions of the Metallurgical Society of AIME, 216, 297-308 (1959)
[18] Falgout, R.D., Yang, U.M.: hypre: A Library of High Performance Preconditioners Sloot PMA Hoekstra AG Tan CJK Dongarra JJ eds Computational Science — ICCS 2002 Springer Heidelberg-Berlin (2002)
[19] Falgout, R.D., Jones, J.E., Yang, U.M. Bruaset, A.M., Tveito, A. (eds.): The Design and Implementation of hypre, a Library of Parallel High Performance Preconditioners. Springer, Heidelberg-Berlin (2006). doi:10.1007/3-540-31619-1_8
[20] van Genuchten, MT, A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils, Soil Science Society of America Journal, 44, 892-898 (1980)
[21] Gries, S., On the Convergence of System-AMG in Reservoir Simulation, SPE J., 23, 2, 589-597 (2018)
[22] Gries, S.; Stüben, K.; Brown, GL; Chen, D.; Collins, DA, Preconditioning for Efficiently Applying Algebraic Multigrid in Fully Implicit Reservoir Simulations, SPE J., 19, 4, 726-736 (2014)
[23] Griewank, A.: Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation Society for Industrial and Applied Mathematics SIAM Philadelphia PA (2000)
[24] Hackbusch, W.: Multi-Grid Methods and Applications Springer Heidelberg-Berlin (1985)
[25] Hascoet, L.; Pascual, V., The Tapenade Automatic Differentiation tool: principles, model, and specification, ACM Transactions on Mathematical Software TOMS, 39, 3, 20 (2013) · Zbl 1295.65026
[26] Henson, V.; Yang, U., BoomerAMG: A parallel algebraic multigrid solver and preconditioner, Appl. Numer. Math., 41, 1, 155-177 (2002) · Zbl 0995.65128
[27] Jenny, P.; Lee, S.; Tchelepi, H., Adaptive fully implicit multi-scale finite-volume method for multi-phase flow and transport in heterogeneous porous media, J. Comput. Phys., 217, 2, 627-641 (2006) · Zbl 1160.76373
[28] Kayum, S., Cancelliere, M., Rogowski, M., Al-Zawawi, A.: Application of Algebraic Multigrid in Fully Implicit Massive Reservoir Simulations. In: SPE Europec featured at 81st EAGE Conference and Exhibition, London, England, UK, Society of Petroleum Engineers Richardson. doi:10.2118/195472-MS. TX, USA (2019)
[29] Klíe, H.M., Ramè, M., Wheeler, M.: Two-stage Preconditioners for inexact Newton Methods in multi-phase reservoir simulation. doi:10.1.1.30.7551&rep=rep1&type=pdf (1996)
[30] Klíe, H.M., Monteagudo, J., Hoteit, H., Rodriguez, A.A.: Towards a New Generation of Physics Driven Solvers for Black Oil and Compositional Flow Simulation. In: SPE Reservoir Simulation Symposium, The Woodlands, TX, USA, Society of Petroleum Engineers, Richardson, TX, USA. doi:10.2118/118752-MS (2009)
[31] Lacroix, S.; Vassilevski, YV; Wheeler, MF, Decoupling preconditioners in the implicit parallel accurate reservoir simulator IPARS, Numerical Linear Algebra with Applications, 8, 8, 537-549 (2001) · Zbl 1071.76583
[32] Lacroix, S.; Vassilevski, Y.; Wheeler, J.; Wheeler, M., Iterative Solution Methods for Modeling Multiphase Flow in Porous Media Fully Implicitly, SIAM J. Sci. Comput., 25, 3, 905-926 (2003) · Zbl 1163.65310
[33] Mary, T.: Block low-rank multifrontal solvers : complexity, performance, and scalability. PhD thesis, Université Paul Sabatier - Toulouse III https://tel.archives-ouvertes.fr/tel-01929478 (2017)
[34] Mishev, I.D., Shaw, J.S., Lu, P.: Numerical Experiments with AMG Solver in Reservoir Simulation. In: SPE Reservoir Simulation Symposium, The Woodlands, TX, USA, Society of Petroleum Engineers, Richardson, TX, USA. doi:10.2118/141765-MS (2011)
[35] Mualem, Y., A New Model for Predicting the Hydraulic Conductivity of Unsaturated Porous Media, Water Resour. Res., 12, 513-522 (1976)
[36] Pape, H.; Clauser, C.; Iffland, J., Permeability prediction based on fractal pore-space geometry, Geophysics, 64, 5, 1447-1460 (1999)
[37] Rall, LB: Automatic Differentiation: Techniques and Applications Springer New York (1981) · Zbl 0473.68025
[38] Rath, V.; Wolf, A.; Bücker, M., Joint three-dimensional inversion of coupled groundwater flow and heat transfer based on automatic differentiation: sensitivity calculation, verification and synthetic examples, Geophys. J. Int., 167, 453-466 (2006)
[39] Saad, Y., A Flexible Inner-Outer Preconditioned GMRES Algorithm, SIAM J. Sci. Comput., 14, 2, 461-469 (1993) · Zbl 0780.65022
[40] Saad, Y.: Iterative Methods for Sparse Linear Systems 2nd edn Society for Industrial and Applied Mathematics Philadelphia, PA (2003)
[41] Saad, Y.; Schultz, MH, GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems, SIAM Journal on Scientific and Statistical Computing, 7, 3, 856-869 (1986) · Zbl 0599.65018
[42] Scheichl, R.; Masson, R.; Wendebourg, J., Decoupling and block preconditioning for sedimentary basin simulations, Computational Geosciences, 7, 4, 295-318 (2003) · Zbl 1076.76070
[43] Singh, V.P., Cavanagh, A., Hansen, H., Nazarian, B., Iding, M., Ringrose, P.S., et al.: Reservoir Modeling of CO_2 Plume Behavior Calibrated Against Monitoring Data From Sleipner, Norway. In: SPE Annual Technical Conference and Exhibition, Florence, Italy, Society of Petroleum Engineers Richardson TX USA. doi:10.2118/134891-MS (2010)
[44] SPE: SPE 10th Comparative Solution Project Description of Model 2: SPE Project Website: http://www.spe.org/web/csp/datasets/set02.htm Richardson TX (2001)
[45] Stüben, K., Clees, T., Klie, H., Lu, B., Wheeler, M.F.: Algebraic Multigrid Methods (AMG) for the Efficient Solution of Fully Implicit Formulations in Reservoir Simulation. In: SPE Reservoir Simulation Symposium, Houston, TX, USA, Society of Petroleum Engineers, Richardson, TX, USA. doi:10.2118/105832-MS (2007)
[46] Van der Vorst, HA, Bi-CGStab: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems, SIAM J. Sci. Stat. Comput., 13, 2, 631-644 (1992) · Zbl 0761.65023
[47] Wallis, J., et al.: Incomplete Gaussian Elimination as a Preconditioning for Generalized Conjugate Gradient Acceleration. In: SPE Reservoir Simulation Symposium, San Francisco, CA, Society of Petroleum Engineers, Richardson, TX, USA. doi:10.2118/12265-MS (1983)
[48] Wallis, J.R., Kendall, R., Little, T., et al.: Constrained Residual Acceleration of Conjugate Residual Methods. doi:10.2118/13536-MS (1985)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.