zbMATH — the first resource for mathematics

PorePy: an open-source software for simulation of multiphysics processes in fractured porous media. (English) Zbl 1453.86001
Summary: Development of models and dedicated numerical methods for dynamics in fractured rocks is an active research field, with research moving towards increasingly advanced process couplings and complex fracture networks. The inclusion of coupled processes in simulation models is challenged by the high aspect ratio of the fractures, the complex geometry of fracture networks, and the crucial impact of processes that completely change characteristics on the fracture-rock interface. This paper provides a general discussion of design principles for introducing fractures in simulators, and defines a framework for integrated modeling, discretization, and computer implementation. The framework is implemented in the open-source simulation software PorePy, which can serve as a flexible prototyping tool for multiphysics problems in fractured rocks. Based on a representation of the fractures and their intersections as lower-dimensional objects, we discuss data structures for mixed-dimensional grids, formulation of multiphysics problems, and discretizations that utilize existing software. We further present a Python implementation of these concepts in the PorePy open-source software tool, which is aimed at coupled simulation of flow and transport in three-dimensional fractured reservoirs as well as deformation of fractures and the reservoir in general. We present validation by benchmarks for flow, poroelasticity, and fracture deformation in porous media. The flexibility of the framework is then illustrated by simulations of non-linearly coupled flow and transport and of injection-driven deformation of fractures. All results can be reproduced by openly available simulation scripts.

86-04 Software, source code, etc. for problems pertaining to geophysics
86-08 Computational methods for problems pertaining to geophysics
Full Text: DOI
[1] Berkowitz, B., Characterizing flow and transport in fractured geological media: a review, Adv. Water Resour., 25, 8-12, 861-884 (2002)
[2] Martin, V.; Jaffré, J.; Roberts, JE, Modeling fractures and barriers as interfaces for flow in porous media, SIAM J. Sci. Comput., 26, 5, 1667-1691 (2005) · Zbl 1083.76058
[3] Barton, N.; Bandis, S.; Bakhtar, K., Strength, deformation and conductivity coupling of rock joints, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 22, 3, 121-140 (1985)
[4] Frih, N.; Roberts, JE; Saada, A., Modeling fractures as interfaces: a model for Forchheimer fractures, Comput. Geosci., 12, 1, 91-104 (2008) · Zbl 1138.76062
[5] Rutqvist, J.; Wu, Y-S; Tsang, C-F; Bodvarsson, G., A modeling approach for analysis of coupled multiphase fluid flow, heat transfer, and deformation in fractured porous rock, Int. J. Rock Mech. Min. Sci., 39, 4, 429-442 (2002)
[6] Burnell, J., et al.: Geothermal supermodels: the next generation of integrated geophysical, chemical and flow simulation modelling tools. Proc World Geotherm. Congr. 7 (2015)
[7] Pruess, K.: TOUGH2: a general numerical simulator for multiphase fluid and heat flow. Report LBL-29400 (1991)
[8] Hammond, GE; Lichtner, PC; Mills, RT, Evaluating the performance of parallel subsurface simulators: an illustrative example with PFLOTRAN: evaluating the parallel performance of Pflotran, Water Resour. Res., 50, 1, 208-228 (2014)
[9] Barenblatt, GI; Zheltov, IP; Kochina, IN, Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks [strata], J. Appl. Math. Mech., 24, 5, 1286-1303 (1960) · Zbl 0104.21702
[10] Arbogast, T.; Douglas, J. Jr; Hornung, U., Derivation of the double porosity model of single phase flow via homogenization theory, SIAM J. Math. Anal., 21, 4, 823-836 (1990) · Zbl 0698.76106
[11] Lemonnier, P.; Bourbiaux, B., Simulation of naturally fractured reservoirs. State of the art: part 1 - physical mechanisms and simulator formulation, Oil Gas Sci. Technol. Rev. L’Institut Fr. Pétrole, 65, 2, 239-262 (2010)
[12] Lemonnier, P.; Bourbiaux, B., Simulation of naturally fractured reservoirs. State of the art: part 2 - matrix-fracture transfers and typical features of numerical studies, Oil Gas Sci. Technol. - Rev. L’Institut Fr. Pétrole, 65, 2, 263-286 (2010)
[13] Hyman, JD; Karra, S.; Makedonska, N.; Gable, CW; Painter, SL; Viswanathan, HS, dfnWorks: a discrete fracture network framework for modeling subsurface flow and transport, Comput. Geosci., 84, 10-19 (2015)
[14] Erhel, J.; de Dreuzy, J-R; Poirriez, B., Flow simulation in three-dimensional discrete fracture networks, SIAM J. Sci. Comput., 31, 4, 2688-2705 (2009) · Zbl 1387.65124
[15] Berrone, S.; Pieraccini, S.; Scialò, S., On simulations of discrete fracture network flows with an optimization-based extended finite element method, SIAM J. Sci. Comput., 35, 2, A908-A935 (2013) · Zbl 1266.65187
[16] Berre, I.; Doster, F.; Keilegavlen, E., Flow in fractured porous media: a review of conceptual models and discretization approaches, Transp. Porous Media, 130, 215-236 (2018)
[17] Noorishad, J.; Mehran, M., An upstream finite element method for solution of transient transport equation in fractured porous media, Water Resour. Res., 18, 3, 588-596 (1982)
[18] Baca, RG; Arnett, RC; Langford, DW, Modelling fluid flow in fractured-porous rock masses by finite-element techniques, Int. J. Numer. Methods Fluids, 4, 4, 337-348 (1984) · Zbl 0579.76095
[19] Reichenberger, V.; Jakobs, H.; Bastian, P.; Helmig, R., A mixed-dimensional finite volume method for two-phase flow in fractured porous media, Adv. Water Resour., 29, 7, 1020-1036 (2006)
[20] Li, L.; Lee, SH, Efficient field-scale simulation of black oil in a naturally fractured reservoir through discrete fracture networks and homogenized media, SPE Reserv. Eval. Eng., 11, 4, 750-758 (2008)
[21] Fumagalli, A.; Scotti, A.; Cangiani, A.; Davidchack, RL; Georgoulis, E.; Gorban, AN; Levesley, J.; Tretyakov, MV, A reduced model for flow and transport in fractured porous media with non-matching grids, Numerical Mathematics and Advanced Applications 2011, 499-507 (2013), Berlin: Springer, Berlin · Zbl 1273.76398
[22] Flemisch, B.; Fumagalli, A.; Scotti, A.; Ventura, G.; Benvenuti, E., A review of the XFEM-based approximation of flow in fractured porous media, Advances in Discretization Methods, 47-76 (2016), Cham: Springer International Publishing, Cham · Zbl 1371.76093
[23] Schwenck, N.; Flemisch, B.; Helmig, R.; Wohlmuth, BI, Dimensionally reduced flow models in fractured porous media: crossings and boundaries, Comput. Geosci., 19, 6, 1219-1230 (2015) · Zbl 1391.76747
[24] Jiang, J.; Younis, RM, An improved projection-based embedded discrete fracture model (pEDFM) for multiphase flow in fractured reservoirs, Adv. Water Resour., 109, 267-289 (2017)
[25] Flemisch, B.; Darcis, M.; Erbertseder, K.; Faigle, B.; Lauser, A.; Mosthaf, K.; Müthing, S.; Nuske, P.; Tatomir, A.; Wolff, M.; Helmig, R., DuMux: DUNE for multi-phase,component,scale,physics,… flow and transport in porous media, Adv. Water Resour., 34, 9, 1102-1112 (2011)
[26] Matthäi, SK; Geiger, S.; Roberts, SG; Paluszny, A.; Belayneh, M.; Burri, A.; Mezentsev, A.; Lu, H.; Coumou, D.; Driesner, T.; Heinrich, CA, Numerical simulation of multi-phase fluid flow in structurally complex reservoirs, Geol. Soc. Lond. Spec. Publ., 292, 1, 405-429 (2007)
[27] Gaston, D.; Newman, C.; Hansen, G.; Lebrun-Grandié, D., MOOSE: a parallel computational framework for coupled systems of nonlinear equations, Nucl. Eng. Des., 239, 10, 1768-1778 (2009)
[28] Breede, K.; Dzebisashvili, K.; Liu, X.; Falcone, G., A systematic review of enhanced (or engineered) geothermal systems: past, present and future, Geotherm. Energy, 1, 1, 4 (2013)
[29] Wang, W.; Kolditz, O., Object-oriented finite element analysis of thermo-hydro-mechanical (THM) problems in porous media, Int. J. Numer. Methods Eng., 69, 1, 162-201 (2007) · Zbl 1176.74199
[30] Březina, J.; Stebel, J.; Kozubek, T.; Blaheta, R.; Šístek, J.; Rozložník, M.; Čermák, M., Analysis of model error for a continuum-fracture model of porous media flow, High Performance Computing in Science and Engineering, 152-160 (2016), Cham: Springer International Publishing, Cham · Zbl 1382.76240
[31] Lie, K.-A.: An Introduction to Reservoir Simulation Using MATLAB/GNU Octave: User Guide for the MATLAB Reservoir Simulation Toolbox (MRST), 1st edn. Cambridge University Press (2019) · Zbl 1425.76001
[32] Lie, K-A; Krogstad, S.; Ligaarden, IS; Natvig, JR; Nilsen, HM; Skaflestad, B., Open-source MATLAB implementation of consistent discretisations on complex grids, Comput. Geosci., 16, 2, 297-322 (2012) · Zbl 1348.86002
[33] Alnæs, M., et al.: The FEniCS Project Version 1.5. Arch. Numer. Softw. 3, (2015). doi:10.11588/ans.2015.100.20553
[34] Blatt, M., et al.: The distributed and unified numerics environment, Version 2.4. Arch. Numer. Softw. 4, (2016). doi:10.11588/ans.2016.100.26526
[35] Rathgeber, F.; Ham, DA; Mitchell, L.; Lange, M.; Luporini, F.; Mcrae, ATT; Bercea, GT; Markall, GR; Kelly, PHJ, Firedrake: automating the finite element method by composing abstractions, ACM Trans. Math. Softw., 43, 3, 1-27 (2016) · Zbl 1396.65144
[36] Boon, W.M., Nordbotten, J.M., Vatne, J.E.: Functional analysis and exterior calculus on mixed-dimensional geometries. Ann. Mat. (2020). doi:10.1007/s10231-020-01013-1
[37] Boon, W.M., Nordbotten, J.M.: Stable mixed finite elements for linear elasticity with thin inclusions. arXiv. 1903.01757, (2019)
[38] Nordbotten, JM; Boon, WM; Fumagalli, A.; Keilegavlen, E., Unified approach to discretization of flow in fractured porous media, Comput. Geosci., 23, 2, 225-237 (2019) · Zbl 1414.76064
[39] Geuzaine, C.; Remacle, J-F, Gmsh: a 3-D finite element mesh generator with built-in pre- and post-processing facilities, Int. J. Numer. Methods Eng., 79, 11, 1309-1331 (2009) · Zbl 1176.74181
[40] Karimi-Fard, M.: An efficient discrete-fracture model applicable for general-purpose reservoir simulators. SPE J. 9(2), (2004). doi:10.2118/88812-PA
[41] Hui, M.-H., Mallison, B., Lim, K.-T.: An innovative workflow to model fractures in a giant carbonate reservoir. Proc. Int. Pet. Tech. Conf. 15 (2008)
[42] Berre, I., et al.: Verification benchmarks for single-phase flow in three-dimensional fractured porous media. arXiv. 2002.07005, (2020)
[43] Boon, W.M., Nordbotten, J.M., Yotov, I.: Robust discretization of flow in fractured porous media. SIAM J. Numer. Anal. 56(4), 2203-2233 (2018). doi:10.1137/17M1139102 · Zbl 1402.65149
[44] Quarteroni, A.; Valli, A., Numerical approximation of partial differential equations (1997), Berlin: Springer, Berlin
[45] Garipov, TT; Karimi-Fard, M.; Tchelepi, HA, Discrete fracture model for coupled flow and geomechanics, Comput. Geosci., 20, 1, 149-160 (2016) · Zbl 1392.76079
[46] Ucar, E.; Keilegavlen, E.; Berre, I.; Nordbotten, JM, A finite-volume discretization for deformation of fractured media, Comput. Geosci., 22, 4, 993-1007 (2018) · Zbl 1396.74099
[47] McClure, MW; Horne, RN, An investigation of stimulation mechanisms in Enhanced Geothermal Systems, Int. J. Rock Mech. Min. Sci., 72, 242-260 (2014)
[48] Coussy, O., Poromechanics (2003), Wiley: Chichester, Wiley
[49] Berge, RL; Berre, I.; Keilegavlen, E.; Nordbotten, JM; Wohlmuth, B., Finite volume discretization for poroelastic media with fractures modeled by contact mechanics, Int. J. Numer. Methods Eng., 121, 4, 644-663 (2020)
[50] Dong, S.; Zeng, L.; Dowd, P.; Xu, C.; Cao, H., A fast method for fracture intersection detection in discrete fracture networks, Comput. Geotech., 98, 205-216 (2018)
[51] Mallison, B.T., Hui, M.H., Narr, W.: Practical gridding algorithms for discrete fracture modeling workflows. presented at the 12th European Conference on the Mathematics of Oil Recovery, Oxford, UK (2010). doi:10.3997/2214-4609.20144950
[52] Holm, R.; Kaufmann, R.; Heimsund, B-O; Øian, E.; Espedal, MS, Meshing of domains with complex internal geometries, Numer. Linear Algebra Appl., 13, 9, 717-731 (2006) · Zbl 1174.76363
[53] Berge, RL; Klemetsdal, ØS; Lie, K-A, Unstructured Voronoi grids conforming to lower dimensional objects, Comput. Geosci., 23, 1, 169-188 (2019) · Zbl 1411.65155
[54] Shewchuk, JR, Triangle: engineering a 2D quality mesh generator and Delaunay triangulator, Applied Computational Geometry: Towards Geometric Engineering, 203-222 (1996)
[55] Si, H., TetGen, a Delaunay-based quality tetrahedral mesh generator, ACM Trans. Math. Softw., 41, 2, 1-36 (2015) · Zbl 1369.65157
[56] Boffi, D.; Brezzi, F.; Fortin, M., Mixed finite element methods and applications (2013), Berlin: Springer, Berlin · Zbl 1277.65092
[57] da Veiga, LB; Brezzi, F.; Marini, LD; Russo, A., Mixed virtual element methods for general second order elliptic problems on polygonal meshes, ESAIM Math. Model. Numer. Anal., 50, 3, 727-747 (2016) · Zbl 1343.65134
[58] da Veiga, LB; Brezzi, F.; Marini, LD; Russo, A., H(div) and H(curl) -conforming virtual element methods, Numer. Math., 133, 2, 303-332 (2016) · Zbl 1343.65133
[59] Nordbotten, JM, Convergence of a cell-centered finite volume discretization for linear elasticity, SIAM J. Numer. Anal., 53, 6, 2605-2625 (2015) · Zbl 1330.74171
[60] Keilegavlen, E.; Nordbotten, JM, Finite volume methods for elasticity with weak symmetry, Int. J. Numer. Methods Eng., 112, 8, 939-962 (2017)
[61] Nordbotten, JM, Stable cell-centered finite volume discretization for Biot equations, SIAM J. Numer. Anal., 54, 2, 942-968 (2016) · Zbl 1382.76187
[62] Nordbotten, J.M., Keilegavlen, E.: An introduction to multi-point flux (MPFA) and stress (MPSA) finite volume methods for thermo-poroelasticity. arXiv. 2001.01990, (2020)
[63] Hüeber, S.; Stadler, G.; Wohlmuth, BI, A primal-dual active set algorithm for three-dimensional contact problems with coulomb friction, SIAM J. Sci. Comput., 30, 2, 572-596 (2008) · Zbl 1158.74045
[64] Stefansson, I., Berre, I., Keilegavlen, E.: A fully coupled numerical model of thermo-hydro-mechanical processes and fracture contact mechanics in porous media. arXiv:2008.06289, (2020) · Zbl 1454.65152
[65] Berge, R.L., Berre, I., Keilegavlen, E., Nordbotten, J.M.: Viscous fingering in fractured porous media. arXiv:1906.10472, (2019)
[66] Budisa, A., Boon, W., Hu, X.: Mixed-dimensional auxiliary space preconditioners. arXiv:1910.04704, (2019) · Zbl 1452.65049
[67] Budiša, A., Hu, X.: Block preconditioners for mixed-dimensional discretization of flow in fractured porous media. Comput. Geosci. (2020). doi:10.1007/s10596-020-09984-z
[68] Ahrens, J., Geveci, B., Law, C.: ParaView: an end-user tool for large data visualization
[69] Fumagalli, A.; Keilegavlen, E.; Scialò, S., Conforming, non-conforming and non-matching discretization couplings in discrete fracture network simulations, J. Comput. Phys., 376, 694-712 (2019) · Zbl 1416.76306
[70] Fumagalli, A.; Keilegavlen, E., Dual virtual element methods for discrete fracture matrix models, Oil Gas Sci. Technol. - Rev. D’IFP Energ. Nouv., 74, 41 (2019)
[71] Stefansson, I.; Berre, I.; Keilegavlen, E., Finite-volume discretisations for flow in fractured porous media, Transp. Porous Media, 124, 2, 439-462 (2018)
[72] PorePy implementation with runscripts.doi:10.5281/zenodo.3374624. (2019)
[73] Flemisch, B.; Berre, I.; Boon, W.; Fumagalli, A.; Schwenck, N.; Scotti, A.; Stefansson, I.; Tatomir, A., Benchmarks for single-phase flow in fractured porous media, Adv. Water Resour., 111, 239-258 (2018)
[74] Mandel, J., Consolidation des sols (étude mathématique), Geotechnique, 3, 7, 287-299 (1953)
[75] Abousleiman, Y.; Cheng, A-D; Cui, L.; Detournay, E.; Rogiers, J-C, Mandel’s problem revisited, Geotechnique, 46, 2, 187-195 (1996)
[76] Cheng, AH-D; Detournay, E., A direct boundary element method for plane strain poroelasticity, Int. J. Numer. Anal. Methods Geomech., 12, 5, 551-572 (1988) · Zbl 0662.73056
[77] Mikelić, A.; Wang, B.; Wheeler, MF, Numerical convergence study of iterative coupling for coupled flow and geomechanics, Comput. Geosci., 18, 3-4, 325-341 (2014) · Zbl 1386.76115
[78] Sneddon, IN, Fourier Transforms (1995), New York: Dover Publications, New York
[79] Crouch, SL; Starfield, AM, Boundary Element Methods in Solid Mechanics: with Applications in Rock Mechanics and Geological Engineering (1983), London: Allen & Unwin, London · Zbl 0528.73083
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.