×

zbMATH — the first resource for mathematics

An R package for generating covariance matrices for maximum-entropy sampling from precipitation chemistry data. (English) Zbl 1460.90177
Summary: We present an open-source R package (MESgenCov v 0.1.0) for temporally fitting multivariate precipitation chemistry data and extracting a covariance matrix for use in the MESP (maximum-entropy sampling problem). We provide multiple functionalities for modeling and model assessment. The package is tightly coupled with NADP/NTN (National Atmospheric Deposition Program/National Trends Network) data from their set of 379 monitoring sites, 1978-present. The user specifies the sites, chemicals, and time period desired, fits an appropriate user-specified univariate model for each site and chemical selected, and the package produces a covariance matrix for use by MESP algorithms.
MSC:
90C30 Nonlinear programming
62B10 Statistical aspects of information-theoretic topics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Anstreicher, KM; Fampa, M.; Lee, J.; Williams, J., Using continuous nonlinear relaxations to solve constrained maximum-entropy sampling problems, Math Program, 85, 2, 221-240 (1999) · Zbl 0954.90048
[2] Anstreicher KM, Lee J (2004) A masked spectral bound for maximum-entropy sampling. In mODa 7—advances in model-oriented design and analysis, Contrib. Statist., pages 1-12. Physica, Heidelberg
[3] Anstreicher KM (2018) Efficient solution of maximum-entropy sampling problems Preprint available at: https://www.biz.uiowa.edu/faculty/anstreicher/papers/linx.pdf
[4] Anstreicher, KM, Maximum-entropy sampling and the boolean quadric polytope, J Glob Optim, 72, 4, 603-618 (2018) · Zbl 1404.90097
[5] Burer, S.; Lee, J., Solving maximum-entropy sampling problems using factored masks, Math Program, 109, 2-3, 263-281 (2007) · Zbl 1278.90317
[6] Brown PJ, Le ND, Zidek JV (1994) Multivariate spatial interpolation and exposure to air pollutants. Canad J Statist 22(4):489-509 · Zbl 0817.62043
[7] Chen Z, Fampa M, Lambert A, Lee J (2020) Mixing convex-optimization bounds for maximum-entropy sampling. arXiv:2001.11896
[8] Fedorov V, Lee J (2000) Design of experiments in statistics. In: Handbook of semidefinite programming, vol 27 of Internat. Ser. Oper. Res. Management Sci., pages 511-532. Kluwer Acad. Publ., Boston, MA · Zbl 0957.90516
[9] Guttorp P, Le ND, Sampson PD, Zidek JV (1993) Using entropy in the redesign of an environmental monitoring network. In: Multivariate environmental statistics, vol 6 of North-Holland Ser. Statist. Probab., pp 175-202. North-Holland, Amsterdam · Zbl 0828.62100
[10] Goerg, GM, Lambert W random variables - a new family of generalized skewed distributions with applications to risk estimation, Ann Appl Stat, 5, 3, 2197-2230 (2011) · Zbl 1228.62016
[11] Goerg GM (2016) LambertW: Probabilistic models to analyze and gaussianize heavy-tailed, skewed data. Version 0.6.4. https://cran.r-project.org/web/packages/LambertW/
[12] Hoffman AJ, Lee J, Williams J (2001) New upper bounds for maximum-entropy sampling. In: mODa 6—advances in model-oriented design and analysis (Puchberg/Schneeberg, 2001), Contrib. Statist., pages 143-153. Physica, Heidelberg
[13] Korkmaz, S.; Goksuluk, D.; Zararsiz, G., MVN: An R package for assessing multivariate normality, R J, 6, 2, 151-162 (2014)
[14] Ko, C-W; Lee, J.; Queyranne, M., An exact algorithm for maximum entropy sampling, Oper Res, 43, 4, 684-691 (1995) · Zbl 0857.90069
[15] Lee, J., Constrained maximum-entropy sampling, Oper Res, 46, 5, 655-664 (1998) · Zbl 1009.62599
[16] Lee J (2012) Encyclopedia of environmetrics. In: El-Shaarawi AH, Piegorsch WW (eds) chapter Maximum entropy sampling. 2nd edn. Wiley, New York, pp 1570-1574
[17] Lee, J.; Williams, J., A linear integer programming bound for maximum-entropy sampling, Math Program, 94, 2-3, 247-256 (2003) · Zbl 1030.90063
[18] Le ND, Zidek JV (2006) Statistical analysis of environmental space-time processes. Springer Series in Statistics. Springer, New York · Zbl 1102.62126
[19] Le N, Zidek J, White R, Cubranic D (2019) EnviroStat: Statistical analysis of environmental space-time processes. Version 0.4-2 https://rdrr.io/cran/EnviroStat/
[20] Millard, SP, EnvStats: An R package for environmental statistics (2013), New York: Springer, New York · Zbl 1276.62002
[21] NADP (2018) National acidic deposition program, national trends network https://nadp.slh.wisc.edu/ntn/
[22] Rencher, AC; Christensen, WF, Methods of multivariate analysis wiley series in probability and statistics (2012), New York: Wiley, New York · Zbl 1275.62011
[23] Shewry, MC; Wynn, HP, Maximum entropy sampling, J Appl Stat, 14, 2, 165-170 (1987)
[24] Sebastiani, P.; Wynn, HenryP, Maximum entropy sampling and optimal bayesian experimental design, J R Stat Soc Ser B (Stat Methodol), 62, 1, 145-157 (2000) · Zbl 0941.62084
[25] Zidek JV, Sun W, Le ND (2000) Designing and integrating composite networks for monitoring multivariate Gaussian pollution fields. Journal of the Royal Statistical Society. Series C. Applied Statistics 49(1):63-79 · Zbl 0974.62109
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.