zbMATH — the first resource for mathematics

Bayesian inference in nonparanormal graphical models. (English) Zbl 1459.62035
Summary: Gaussian graphical models have been used to study intrinsic dependence among several variables, but the Gaussianity assumption may be restrictive in many applications. A nonparanormal graphical model is a semiparametric generalization for continuous variables where it is assumed that the variables follow a Gaussian graphical model only after some unknown smooth monotone transformations on each of them. We consider a Bayesian approach in the nonparanormal graphical model by putting priors on the unknown transformations through a random series based on B-splines where the coefficients are ordered to induce monotonicity. A truncated normal prior leads to partial conjugacy in the model and is useful for posterior simulation using Gibbs sampling. On the underlying precision matrix of the transformed variables, we consider a spike-and-slab prior and use an efficient posterior Gibbs sampling scheme. We use the Bayesian Information Criterion to choose the hyperparameters for the spike-and-slab prior. We present a posterior consistency result on the underlying transformation and the precision matrix. We study the numerical performance of the proposed method through an extensive simulation study and finally apply the proposed method on a real data set.
Reviewer: Reviewer (Berlin)
62F15 Bayesian inference
62H22 Probabilistic graphical models
62P10 Applications of statistics to biology and medical sciences; meta analysis
92D20 Protein sequences, DNA sequences
AS 177; BDgraph; glasso
Full Text: DOI Euclid
[1] Arbel, J., Gayraud, G., and Rousseau, J. (2013). “Bayesian optimal adaptive estimation using a sieve prior.” Scandinavian Journal of Statistics, 40(3):549-570. · Zbl 1364.62102
[2] Armagan, A., B. Dunson, D., and Lee, J. (2013). “Generalized double Pareto shrinkage.” Statistica Sinica, 23(1):119-143. · Zbl 1259.62061
[3] Baldi, P., Brunak, S., Chauvin, Y., Andersen, C. A. F., and Nielsen, H. (2000). “Assessing the accuracy of prediction algorithms for classification: an overview.” Bioinformatics, 16(5):412-424.
[4] Banerjee, O., El Ghaoui, L., and d’Aspremont, A. (2008). “Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data.” Journal of Machine Learning Research, 9:485-516. · Zbl 1225.68149
[5] Banerjee, S. and Ghosal, S. (2014). “Posterior convergence rates for estimating large precision matrices using graphical models.” Electronic Journal of Statistics, 8(2):2111-2137. · Zbl 1302.62124
[6] Banerjee, S. and Ghosal, S. (2015). “Bayesian structure learning in graphical models.” Journal of Multivariate Analysis, 136:147-162. · Zbl 1308.62119
[7] Berger, J. O. and Barbieri, M. M. (2004). “Optimal predictive model selection.” The Annals of Statistics, 32(3):870-897. · Zbl 1092.62033
[8] Bhattacharya, A., Pati, D., Pillai, N. S., and Dunson, D. B. (2015). “Dirichlet-Laplace priors for optimal shrinkage.” Journal of the American Statistical Association, 110(512):1479-1490. · Zbl 1373.62368
[9] Carter, C. K., Wong, F., and Kohn, R. (2011). “Constructing priors based on model size for nondecomposable Gaussian graphical models: a simulation based approach.” Journal of Multivariate Analysis, 102(5):871-883. · Zbl 1215.62026
[10] Carvalho, C. M., Polson, N. G., and Scott, J. G. (2010). “The horseshoe estimator for sparse signals.” Biometrika, 97(2):465-480. · Zbl 1406.62021
[11] Choudhuri, N., Ghosal, S., and Roy, A. (2007). “Nonparametric binary regression using a Gaussian process prior.” Statistical Methodology, 4(2):227-243. · Zbl 1248.62053
[12] Dahl, J., Roychowdhury, V., and Vandenberghe, L. (2005). “Maximum likelihood estimation of Gaussian graphical models: numerical implementation and topology selection.” Technical report. University of California, Los Angeles.
[13] Dahl, J., Vandenberghe, L., and Roychowdhury, V. (2008). “Covariance selection for nonchordal graphs via chordal embedding.” Optimization Methods and Software, 23(4):501-520. · Zbl 1151.90514
[14] d’Aspremont, A., Banerjee, O., and El Ghaoui, L. (2008). “First-order methods for sparse covariance selection.” SIAM Journal on Matrix Analysis and Applications, 30(1):56-66. · Zbl 1156.90423
[15] de Jonge, R. and van Zanten, J. (2012). “Adaptive estimation of multivariate functions using conditionally Gaussian tensor-product spline priors.” Electronic Journal of Statistics, 6(0):1984-2001. · Zbl 1295.62007
[16] Dobra, A. and Lenkoski, A. (2011). “Copula Gaussian graphical models and their application to modeling functional disability data.” The Annals of Applied Statistics, 5(2A):969-993. · Zbl 1232.62046
[17] Foygel, R. and Drton, M. (2010). “Extended Bayesian information criteria for Gaussian graphical models.” In Advances in Neural Information Processing Systems 23, pages 604-612.
[18] Friedman, J., Hastie, T., and Tibshirani, R. (2008). “Sparse inverse covariance estimation with the graphical lasso.” Biostatistics, 9(3):432-441. · Zbl 1143.62076
[19] Ghosal, S. and van der Vaart, A. (2017). Fundamentals of Nonparametric Bayesian Inference. Cambridge Series in Statistical and Probabilistic Mathematics (44). Cambridge University Press, Cambridge. · Zbl 1376.62004
[20] Giudici, P. (1999). “Decomposable graphical Gaussian model determination.” Biometrika, 86(4):785-801. · Zbl 0940.62019
[21] Hájek, J., Šidák, Z., and Sen, P. K. (1999). Theory of Rank Tests. Probability and Mathematical Statistics. Academic Press, Inc., San Diego, CA, second edition. · Zbl 0944.62045
[22] Lenk, P. J. and Choi, T. (2017). “Bayesian Analysis of Shape-Restricted Functions using Gaussian Process Priors.” Statistica Sinica, 27(1): 43-69. · Zbl 1395.62092
[23] Letac, G. and Massam, H. (2007). “Wishart distributions for decomposable graphs.” The Annals of Statistics, 35(3):1278-1323. · Zbl 1194.62078
[24] Liu, H., Han, F., Yuan, M., Lafferty, J., and Wasserman, L. (2012). “High-dimensional semiparametric Gaussian copula graphical models.” The Annals of Statistics, 40(4):2293-2326. · Zbl 1297.62073
[25] Liu, H., Lafferty, J. D., and Wasserman, L. A. (2009). “The nonparanormal: semiparametric estimation of high dimensional undirected graphs.” Journal of Machine Learning Research, 10:2295-2328. · Zbl 1235.62035
[26] Liu, H., Roeder, K., and Wasserman, L. (2010). “Stability approach to regularization selection (StARS) for high dimensional graphical models.” In Advances in Neural Information Processing Systems 23, pages 1432-1440, USA.
[27] Lu, Z. (2009). “Smooth optimization approach for sparse covariance selection.” SIAM Journal on Optimization, 19(4):1807-1827. · Zbl 1179.90257
[28] Lysen, S. (2009). Permuted inclusion criterion: a variable selection technique. PhD thesis, Publicly Accessible Penn Dissertations, 28.
[29] Mazumder, R. and Hastie, T. (2012). “The graphical lasso: new insights and alternatives.” Electronic Journal of Statistics, 6(0):2125-2149. · Zbl 1295.62066
[30] Meinshausen, N. and Buhlmann, P. (2006). “High-dimensional graphs and variable selection with the lasso.” The Annals of Statistics, 34(3):1436-1462. · Zbl 1113.62082
[31] Mohammadi, A., Abegaz, F., van den Heuvel, E., and Wit, E. C. (2017). “Bayesian modelling of Dupuytren disease by using Gaussian copula graphical models.” Journal of the Royal Statistical Society: Series C (Applied Statistics), 66(3):629-645.
[32] Mohammadi, A. and Wit, E. C. (2015). “Bayesian structure learning in sparse Gaussian graphical models.” Bayesian Analysis, 10(1):109-138. · Zbl 1335.62056
[33] Mohammadi, R. and Wit, E. C. (2017). “BDgraph: an R package for Bayesian structure learning in graphical models.” arXiv preprint arXiv:1501.05108.
[34] Mohammadi, R. and Wit, E. C. (2019). “BDgraph: Bayesian structure learning in graphical models using birth-death MCMC.” R package version 2.57.
[35] Mulgrave, J. J. and Ghosal, S. (2019). “Supplementary Material for Bayesian Inference in Nonparanormal Graphical Models.” Bayesian Analysis.
[36] Pakman, A. and Paninski, L. (2014). “Exact Hamiltonian Monte Carlo for truncated multivariate Gaussians.” Journal of Computational and Graphical Statistics, 23(2):518-542.
[37] Pitt, M., Chan, D., and Kohn, R. (2006). “Efficient Bayesian inference for Gaussian copula regression models.” Biometrika, 93(3):537-554. · Zbl 1108.62027
[38] Rasmussen, C. E. and Williams, C. K. I. (2006). Gaussian Processes for Machine Learning. Adaptive Computation and Machine Learning. MIT Press, Cambridge, Mass. · Zbl 1177.68165
[39] Rivoirard, V. and Rousseau, J. (2012). “Posterior concentration rates for infinite dimensional exponential families.” Bayesian Analysis, 7(2):311-334. · Zbl 1330.62179
[40] Rothman, A. J., Bickel, P. J., Levina, E., and Zhu, J. (2008). “Sparse permutation invariant covariance estimation.” Electronic Journal of Statistics, 2(0):494-515. · Zbl 1320.62135
[41] Royston, J. P. (1982). “Algorithm AS 177: expected normal order statistics (exact and approximate).” Applied Statistics, 31(2):161.
[42] Scheinberg, K., Ma, S., and Goldfarb, D. (2010). “Sparse inverse covariance selection via alternating linearization methods.” In Proceedings of the 23rd International Conference on Neural Information Processing Systems - Volume 2, NIPS’10, pages 2101-2109, USA. Curran Associates Inc.
[43] Scheipl, F., Fahrmeir, L., and Kneib, T. (2012). “Spike-and-slab priors for function selection in structured additive regression models.” Journal of the American Statistical Association, 107(500):1518-1532. · Zbl 1258.62082
[44] Shen, W. and Ghosal, S. (2015). “Adaptive Bayesian procedures using random series priors: adaptive Bayesian procedures.” Scandinavian Journal of Statistics, 42(4):1194-1213. · Zbl 1419.62076
[45] Talluri, R., Baladandayuthapani, V., and Mallick, B. K. (2014). “Bayesian sparse graphical models and their mixtures: sparse graphical modelling.” Stat, 3(1):109-125.
[46] Uhler, C., Lenkoski, A., and Richards, D. (2018). “Exact formulas for the normalizing constants of Wishart distributions for graphical models.” The Annals of Statistics, 46(1):90-118. · Zbl 1392.62146
[47] van der Vaart, A. and van Zanten, H. (2007). “Bayesian inference with rescaled Gaussian process priors.” Electronic Journal of Statistics, 1(0):433-448. · Zbl 1140.62066
[48] Wang, H. (2012). “Bayesian graphical lasso models and efficient posterior computation.” Bayesian Analysis, 7(4):867-886. · Zbl 1330.62041
[49] Wang, H. (2015). “Scaling it up: stochastic search structure learning in graphical models.” Bayesian Analysis, 10(2):351-377. · Zbl 1335.62068
[50] Wang, H. and Li, S. Z. (2012). “Efficient Gaussian graphical model determination under G-Wishart prior distributions.” Electronic Journal of Statistics, 6(0):168-198. · Zbl 1335.62069
[51] Wille, A., Zimmermann, P., Vranová, E., Fürholz, A., Laule, O., Bleuler, S., Hennig, L., Prelić, A., von Rohr, P., Thiele, L., Zitzler, E., Gruissem, W., and Bühlmann, P. (2004). “Sparse graphical Gaussian modeling of the isoprenoid gene network in Arabidopsis thaliana.” Genome Biology, 5(11):R92-R92.
[52] Witten, D. M., Friedman, J. H., and Simon, N. (2011). “New insights and faster computations for the graphical lasso.” Journal of Computational and Graphical Statistics, 20(4):892-900.
[53] Wong, F., Carter, C. K., and Kohn, R. (2003). “Efficient estimation of covariance selection models.” Biometrika, 90(4):809-830. · Zbl 1436.62346
[54] Yuan, M. and Lin, Y. (2007). “Model selection and estimation in the Gaussian graphical model.” Biometrika, 94(1):19-35. · Zbl 1142.62408
[55] Zhao, T.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.