×

zbMATH — the first resource for mathematics

Modelling within-host macrophage dynamics in influenza virus infection. (English) Zbl 1457.92041
Summary: Human respiratory disease associated with influenza virus infection is of significant public health concern. Macrophages, as part of the front line of host innate cellular defence, have been shown to play an important role in controlling viral replication. However, fatal outcomes of infection, as evidenced in patients infected with highly pathogenic viral strains, are often associated with prompt activation and excessive accumulation of macrophages. Activated macrophages can produce a large amount of pro-inflammatory cytokines, which leads to severe symptoms and at times death. However, the mechanism for rapid activation and excessive accumulation of macrophages during infection remains unclear. It has been suggested that the phenomena may arise from complex interactions between macrophages and influenza virus. In this work, we develop a novel mathematical model to study the relationship between the level of macrophage activation and the level of viral load in influenza infection. Our model combines a dynamic model of viral infection, a dynamic model of macrophages and the essential interactions between the virus and macrophages. Our model predicts that the level of macrophage activation can be negatively correlated with the level of viral load when viral infectivity is sufficiently high. We further identify that temporary depletion of resting macrophages in response to viral infection is a major driver in our model for the negative relationship between the level of macrophage activation and viral load, providing new insight into the mechanisms that regulate macrophage activation. Our model serves as a framework to study the complex dynamics of virus-macrophage interactions and provides a mechanistic explanation for existing experimental observations, contributing to an enhanced understanding of the role of macrophages in influenza viral infection.
MSC:
92C32 Pathology, pathophysiology
92D30 Epidemiology
Software:
DEDiscover
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Adachi, M.; Matsukura, S.; Tokunaga, H.; Kokubu, F., Expression of cytokines on human bronchial epithelial cells induced by influenza virus A, International Archives of Allergy and Immunology, 113, 1-3, 307-311 (1997)
[2] Aldridge, J. R.; Moseley, C. E.; Boltz, D. A.; Negovetich, N. J.; Reynolds, C.; Franks, J.; Brown, S. A.; Doherty, P. C.; Webster, R. G.; Thomas, P. G., TNF/iNOS-producing dendritic cells are the necessary evil of lethal influenza virus infection, Proceedings of the National Academy of Sciences, 106, 13, 5306-5311 (2009)
[3] Baccam, P.; Beauchemin, C.; Macken, C. A.; Hayden, F. G.; Perelson, A. S., Kinetics of influenza A virus infection in humans, Journal of Virology, 80, 15, 7590-7599 (2006)
[4] Baskin, C. R.; Bielefeldt-Ohmann, H.; Tumpey, T. M.; Sabourin, P. J.; Long, J. P.; García-Sastre, A.; Tolnay, A.-E.; Albrecht, R.; Pyles, J. A.; Olson, P. H., Early and sustained innate immune response defines pathology and death in nonhuman primates infected by highly pathogenic influenza virus, Proceedings of the National Academy of Sciences, 106, 9, 3455-3460 (2009)
[5] Beauchemin, C. A.; Handel, A., A review of mathematical models of influenza A infections within a host or cell culture: lessons learned and challenges ahead, BMC Public Health, 11, S1, S7 (2011)
[6] Byrne, A. J.; Mathie, S. A.; Gregory, L. G.; Lloyd, C. M., Pulmonary macrophages: key players in the innate defence of the airways, Thorax, 70, 12, 1189-1196 (2015)
[7] Canini, L.; Carrat, F., Population modeling of influenza A/H1N1 virus kinetics and symptom dynamics, Journal of Virology, 85, 6, 2764-2770 (2011)
[8] Cao, P.; Yan, A. W.; Heffernan, J. M.; Petrie, S.; Moss, R. G.; Carolan, L. A.; Guarnaccia, T. A.; Kelso, A.; Barr, I. G.; McVernon, J., Innate immunity and the inter-exposure interval determine the dynamics of secondary influenza virus infection and explain observed viral hierarchies, PLoS Computational Biology, 11, 8 (2015), e1004334
[9] Cao, P.; Wang, Z.; Yan, A. W.; McVernon, J.; Xu, J.; Heffernan, J. M.; Kedzierska, K.; McCaw, J. M., On the role of CD8+ T cells in determining recovery time from influenza virus infection, Frontiers in Immunology, 7, 611 (2016)
[10] Carrat, F.; Vergu, E.; Ferguson, N. M.; Lemaitre, M.; Cauchemez, S.; Leach, S.; Valleron, A.-J., Time lines of infection and disease in human influenza: a review of volunteer challenge studies, American Journal of Epidemiology, 167, 7, 775-785 (2008)
[11] Chan, M.; Cheung, C.; Chui, W.; Tsao, S.; Nicholls, J.; Chan, Y.; Chan, R.; Long, H.; Poon, L.; Guan, Y., Proinflammatory cytokine responses induced by influenza A (H5N1) viruses in primary human alveolar and bronchial epithelial cells, Respiratory Research, 6, 1, 135 (2005)
[12] Chen, X.; Liu, S.; Goraya, M. U.; Maarouf, M.; Huang, S.; Chen, J.-L., Host immune response to influenza A virus infection, Frontiers in Immunology, 9, 320 (2018)
[13] Cheung, C.; Poon, L.; Lau, A.; Luk, W.; Lau, Y.; Shortridge, K.; Gordon, S.; Guan, Y.; Peiris, J., Induction of proinflammatory cytokines in human macrophages by influenza A (H5N1) viruses: a mechanism for the unusual severity of human disease?, The Lancet, 360, 9348, 1831-1837 (2002)
[14] Chua, B. Y.; Wong, C. Y.; Mifsud, E. J.; Edenborough, K. M.; Sekiya, T.; Tan, A. C.; Mercuri, F.; Rockman, S.; Chen, W.; Turner, S. J., Inactivated influenza vaccine that provides rapid, innate-immune-system-mediated protection and subsequent long-term adaptive immunity, MBio, 6, 6 (2015), e01024-15
[15] Cline, T. D.; Beck, D.; Bianchini, E., Influenza virus replication in macrophages: balancing protection and pathogenesis, The Journal of General Virology, 98, 10, 2401 (2017)
[16] Davidson, S.; Crotta, S.; McCabe, T. M.; Wack, A., Pathogenic potential of interferon \(\alpha \beta\) in acute influenza infection, Nature Communications, 5, 1, 1-15 (2014)
[17] Davies, L. C.; Jenkins, S. J.; Allen, J. E.; Taylor, P. R., Tissue-resident macrophages, Nature Immunology, 14, 10, 986 (2013)
[18] De Jong, M. D.; Simmons, C. P.; Thanh, T. T.; Hien, V. M.; Smith, G. J.; Chau, T. N.B.; Hoang, D. M.; Chau, N. V.V.; Khanh, T. H.; Dong, V. C., Fatal outcome of human influenza A (H5N1) is associated with high viral load and hypercytokinemia, Nature Medicine, 12, 10, 1203-1207 (2006)
[19] Dhar, P.; McAuley, J., The role of the cell surface mucin MUC1 as a barrier to infection and regulator of inflammation, Frontiers in Cellular and Infection Microbiology, 9, 117 (2019)
[20] Dobrovolny, H. M.; Baron, M. J.; Gieschke, R.; Davies, B. E.; Jumbe, N. L.; Beauchemin, C. A., Exploring cell tropism as a possible contributor to influenza infection severity, PloS One, 5, 11 (2010), e13811
[21] Dou, D.; Revol, R.; Östbye, H.; Wang, H.; Daniels, R., Influenza A virus cell entry, replication, virion assembly and movement, Frontiers in immunology, 9, 1581 (2018)
[22] Eftimie, R.; Hamam, H., Modelling and investigation of the CD4+ Tcells-macrophages paradox in melanoma immunotherapies, Journal of Theoretical Biology, 420, 82-104 (2017) · Zbl 1370.92069
[23] Fujikura, D.; Miyazaki, T., Programmed cell death in the pathogenesis of influenza, International Journal of Molecular Sciences, 19, 7, 2065 (2018)
[24] Geiler, J.; Michaelis, M.; Sithisarn, P.; Cinatl, J., Comparison of pro-inflammatory cytokine expression and cellular signal transduction in human macrophages infected with different influenza A viruses, Medical Microbiology and Immunology, 200, 1, 53-60 (2011)
[25] Gordon, S., Alternative activation of macrophages, Nature Reviews Immunology, 3, 1, 23 (2003)
[26] Hadjichrysanthou, C.; Cauët, E.; Lawrence, E.; Vegvari, C.; De Wolf, F.; Anderson, R. M., Understanding the within-host dynamics of influenza A virus: from theory to clinical implications, Journal of The Royal Society Interface, 13, 119, 20160289 (2016)
[27] Handel, A.; Liao, L. E.; Beauchemin, C. A., Progress and trends in mathematical modelling of influenza A virus infections, Current Opinion in Systems Biology, 12, 30-36 (2018)
[28] Hashimoto, Y.; Moki, T.; Takizawa, T.; Shiratsuchi, A.; Nakanishi, Y., Evidence for phagocytosis of influenza virus-infected, apoptotic cells by neutrophils and macrophages in mice, The Journal of Immunology, 178, 4, 2448-2457 (2007)
[29] Hayden, F. G.; Fritz, R.; Lobo, M. C.; Alvord, W.; Strober, W.; Straus, S. E., Local and systemic cytokine responses during experimental human influenza a virus infection. relation to symptom formation and host defense, The Journal of Clinical Investigation, 101, 3, 643-649 (1998)
[30] Högner, K.; Wolff, T.; Pleschka, S.; Plog, S.; Gruber, A. D.; Kalinke, U.; Walmrath, H.-D.; Bodner, J.; Gattenlöhner, S.; Lewe-Schlosser, P., Macrophage-expressed IFN-\( \beta\) contributes to apoptotic alveolar epithelial cell injury in severe influenza virus pneumonia, PLoS Pathogens, 9, 2 (2013), e1003188
[31] Hussell, T.; Bell, T. J., Alveolar macrophages: plasticity in a tissue-specific context, Nature Reviews Immunology, 14, 2, 81-93 (2014)
[32] Ibricevic, A.; Pekosz, A.; Walter, M. J.; Newby, C.; Battaile, J. T.; Brown, E. G.; Holtzman, M. J.; Brody, S. L., Influenza virus receptor specificity and cell tropism in mouse and human airway epithelial cells, Journal of Virology, 80, 15, 7469-7480 (2006)
[33] Iwasaki, A.; Pillai, P. S., Innate immunity to influenza virus infection, Nature Reviews Immunology, 14, 5, 315-328 (2014)
[34] Janeway Jr, C.A., Travers, P., Walport, M., Shlomchik, M.J., 2001. The complement system and innate immunity. In: Immunobiology: The Immune System in Health and Disease. 5th edition, Garland Science.
[35] Kaiser, L.; Fritz, R. S.; Straus, S. E.; Gubareva, L.; Hayden, F. G., Symptom pathogenesis during acute influenza: interleukin-6 and other cytokine responses, Journal of Medical Virology, 64, 3, 262-268 (2001)
[36] Killip, M. J.; Fodor, E.; Randall, R. E., Influenza virus activation of the interferon system, Virus Research, 209, 11-22 (2015)
[37] Kim, H. M.; Lee, Y.-W.; Lee, K.-J.; Kim, H. S.; Cho, S. W.; Van Rooijen, N.; Guan, Y.; Seo, S. H., Alveolar macrophages are indispensable for controlling influenza viruses in lungs of pigs, Journal of Virology, 82, 9, 4265-4274 (2008)
[38] Kobasa, D.; Jones, S. M.; Shinya, K.; Kash, J. C.; Copps, J.; Ebihara, H.; Hatta, Y.; Kim, J. H.; Halfmann, P.; Hatta, M., Aberrant innate immune response in lethal infection of macaques with the 1918 influenza virus, Nature, 445, 7125, 319-323 (2007)
[39] Koutsakos, M.; Kedzierska, K.; Subbarao, K., Immune responses to avian influenza viruses, The Journal of Immunology, 202, 2, 382-391 (2019)
[40] Lee, S. M.; Gardy, J. L.; Cheung, C.; Cheung, T. K.; Hui, K. P.; Ip, N. Y.; Guan, Y.; Hancock, R. E.; Peiris, J. M., Systems-level comparison of host-responses elicited by avian H5N1 and seasonal H1N1 influenza viruses in primary human macrophages, PloS One, 4, 12 (2009), e8072
[41] Li, X.; Jolly, M. K.; George, J. T.; Pienta, K. J.; Levine, H., Computational modeling of the crosstalk between macrophage polarization and tumor cell plasticity in the tumor microenvironment, Frontiers in Oncology, 9, 10 (2019)
[42] Lin, K. L.; Suzuki, Y.; Nakano, H.; Ramsburg, E.; Gunn, M. D., CCR2+ monocyte-derived dendritic cells and exudate macrophages produce influenza-induced pulmonary immune pathology and mortality, The Journal of Immunology, 180, 4, 2562-2572 (2008)
[43] Louzoun, Y.; Xue, C.; Lesinski, G. B.; Friedman, A., A mathematical model for pancreatic cancer growth and treatments, Journal of Theoretical Biology, 351, 74-82 (2014) · Zbl 1412.92154
[44] Lv, J.; Hua, Y.; Wang, D.; Liu, A.; An, J.; Li, A.; Wang, Y.; Wang, X.; Jia, N.; Jiang, Q., Kinetics of pulmonary immune cells, antibody responses and their correlations with the viral clearance of influenza A fatal infection in mice, Virology Journal, 11, 1, 57 (2014)
[45] Martinez, F. O.; Sica, A.; Mantovani, A.; Locati, M., Macrophage activation and polarization, Frontiers in Bioscience, 13, 1, 453-461 (2008)
[46] McAuley, J.; Corcilius, L.; Tan, H.; Payne, R.; McGuckin, M.; Brown, L., The cell surface mucin MUC1 limits the severity of influenza A virus infection, Mucosal Immunology, 10, 6, 1581 (2017)
[47] Miao, H.; Hollenbaugh, J. A.; Zand, M. S.; Holden-Wiltse, J.; Mosmann, T. R.; Perelson, A. S.; Wu, H.; Topham, D. J., Quantifying the early immune response and adaptive immune response kinetics in mice infected with influenza A virus, Journal of virology, 84, 13, 6687-6698 (2010)
[48] Mosser, D. M.; Edwards, J. P., Exploring the full spectrum of macrophage activation, Nature Reviews Immunology, 8, 12, 958-969 (2008)
[49] Murray, P. J., Macrophage polarization, Annual Review of Physiology, 79, 541-566 (2017)
[50] Murray, P. J.; Wynn, T. A., Protective and pathogenic functions of macrophage subsets, Nature Reviews Immunology, 11, 11, 723-737 (2011)
[51] Nathan, C. F.; Murray, H. W.; Wiebe, M. E.; Rubin, B. Y., Identification of interferon-\( \gamma\) as the lymphokine that activates human macrophage oxidative metabolism and antimicrobial activity, The Journal of Experimental Medicine, 158, 3, 670-689 (1983)
[52] Nicol, M. Q.; Dutia, B. M., The role of macrophages in influenza A virus infection, Future Virology, 9, 9, 847-862 (2014)
[53] Pawelek, K. A.; Huynh, G. T.; Quinlivan, M.; Cullinane, A.; Rong, L.; Perelson, A. S., Modeling within-host dynamics of influenza virus infection including immune responses, PLoS Computational Biology, 8, 6 (2012), e1002588
[54] Perrone, L. A.; Plowden, J. K.; García-Sastre, A.; Katz, J. M.; Tumpey, T. M., H5N1 and 1918 pandemic influenza virus infection results in early and excessive infiltration of macrophages and neutrophils in the lungs of mice, PLoS Pathogens, 4, 8 (2008), e1000115
[55] Purnama, C.; Ng, S. L.; Tetlak, P.; Setiagani, Y. A.; Kandasamy, M.; Baalasubramanian, S.; Karjalainen, K.; Ruedl, C., Transient ablation of alveolar macrophages leads to massive pathology of influenza infection without affecting cellular adaptive immunity, European Journal of Immunology, 44, 7, 2003-2012 (2014)
[56] Ronni, T.; Sareneva, T.; Pirhonen, J.; Julkunen, I., Activation of IFN-alpha, IFN-gamma, MxA, and IFN regulatory factor 1 genes in influenza A virus-infected human peripheral blood mononuclear cells, The Journal of Immunology, 154, 6, 2764-2774 (1995)
[57] Rosen, D. G.; Lopez, A. E.; Anzalone, M. L.; Wolf, D. A.; Derrick, S. M.; Florez, L. F.; Gonsoulin, M. L.; Hines, M. O.; Mitchell, R. A.; Phatak, D. R., Postmortem findings in eight cases of influenza A/H1N1, Modern Pathology, 23, 11, 1449-1457 (2010)
[58] Rubins, J.B., 2003. Alveolar macrophages: wielding the double-edged sword of inflammation.
[59] Sanders, C. J.; Doherty, P. C.; Thomas, P. G., Respiratory epithelial cells in innate immunity to influenza virus infection, Cell and Tissue Research, 343, 1, 13-21 (2011)
[60] Smith, A. M.; Perelson, A. S., Influenza A virus infection kinetics: quantitative data and models, Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 3, 4, 429-445 (2011)
[61] Smith, A. M.; McCullers, J. A.; Adler, F. R., Mathematical model of a three-stage innate immune response to a pneumococcal lung infection, Journal of Theoretical Biology, 276, 1, 106-116 (2011) · Zbl 1405.92148
[62] Smith, A. M.; Adler, F. R.; Ribeiro, R. M.; Gutenkunst, R. N.; McAuley, J. L.; McCullers, J. A.; Perelson, A. S., Kinetics of coinfection with influenza A virus and Streptococcus pneumoniae, PLoS Pathog, 9, 3, Article e1003238 pp. (2013)
[63] Snelgrove, R. J.; Goulding, J.; Didierlaurent, A. M.; Lyonga, D.; Vekaria, S.; Edwards, L.; Gwyer, E.; Sedgwick, J. D.; Barclay, A. N.; Hussell, T., A critical function for CD200 in lung immune homeostasis and the severity of influenza infection, Nature Immunology, 9, 9, 1074 (2008)
[64] Sweet, C.; Smith, H., Pathogenicity of influenza virus, Microbiological Reviews, 44, 2, 303 (1980)
[65] Tan, A. C.; Mifsud, E. J.; Zeng, W.; Edenborough, K.; McVernon, J.; Brown, L. E.; Jackson, D. C., Intranasal administration of the TLR2 agonist Pam2Cys provides rapid protection against influenza in mice, Molecular Pharmaceutics, 9, 9, 2710-2718 (2012)
[66] Tate, M. D.; Pickett, D. L.; van Rooijen, N.; Brooks, A. G.; Reading, P. C., Critical role of airway macrophages in modulating disease severity during influenza virus infection of mice, Journal of Virology, 84, 15, 7569-7580 (2010)
[67] Taubenberger, J. K.; Morens, D. M., The pathology of influenza virus infections, Annu. Rev. Pathmechdis. Mech. Dis., 3, 499-522 (2008)
[68] Tumpey, T. M.; García-Sastre, A.; Taubenberger, J. K.; Palese, P.; Swayne, D. E.; Pantin-Jackwood, M. J.; Schultz-Cherry, S.; Solórzano, A.; Van Rooijen, N.; Katz, J. M., Pathogenicity of influenza viruses with genes from the 1918 pandemic virus: functional roles of alveolar macrophages and neutrophils in limiting virus replication and mortality in mice, Journal of Virology, 79, 23, 14933-14944 (2005)
[69] Wang, Y.; Yang, T.; Ma, Y.; Halade, G. V.; Zhang, J.; Lindsey, M. L.; Jin, Y.-F., Mathematical modeling and stability analysis of macrophage activation in left ventricular remodeling post-myocardial infarction, BMC Genomics, 13, S6, S21 (2012)
[70] Wang, J.; Nikrad, M. P.; Travanty, E. A.; Zhou, B.; Phang, T.; Gao, B.; Alford, T.; Ito, Y.; Nahreini, P.; Hartshorn, K., Innate immune response of human alveolar macrophages during influenza a infection, PloS One, 7, 3 (2012), e29879
[71] Wendy, C.; Chan, R. W.; Wang, J.; Travanty, E. A.; Nicholls, J. M.; Peiris, J. M.; Mason, R. J.; Chan, M. C., Viral replication and innate host responses in primary human alveolar epithelial cells and alveolar macrophages infected with influenza H5N1 and H1N1 viruses, Journal of Virology, 85, 14, 6844-6855 (2011)
[72] Wigginton, J. E.; Kirschner, D., A model to predict cell-mediated immune regulatory mechanisms during human infection with mycobacterium tuberculosis, The Journal of Immunology, 166, 3, 1951-1967 (2001)
[73] Yuen, K.-Y.; Chan, P.; Peiris, M.; Tsang, D.; Que, T.; Shortridge, K.; Cheung, P.; To, W.; Ho, E.; Sung, R., Clinical features and rapid viral diagnosis of human disease associated with avian influenza A H5N1 virus, The Lancet, 351, 9101, 467-471 (1998)
[74] Zent, C. S.; Elliott, M. R., Maxed out macs: physiologic cell clearance as a function of macrophage phagocytic capacity, The FEBS Journal, 284, 7, 1021-1039 (2017)
[75] Zhang, J.-M.; An, J., Cytokines, inflammation and pain, International Anesthesiology Clinics, 45, 2, 27 (2007)
[76] Zhou, J.; Law, H. K.; Cheung, C. Y.; Ng, I. H.; Peiris, J. M.; Lau, Y. L., Differential expression of chemokines and their receptors in adult and neonatal macrophages infected with human or avian influenza viruses, The Journal of Infectious Diseases, 194, 1, 61-70 (2006)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.