The quadratic discriminants and the Stickelberger congruence. (Les discriminants quadratiques et la congruence de Stickelberger.) (French) Zbl 0731.11061

A classical theorem of Stickelberger asserts that the discriminant of an algebraic number field is congruent to \(0\) or \(1 \bmod 4\). In this paper, the following generalization is proved: let \(L/K\) be a finite extension of algebraic number fields, \(\Delta\) the relative discriminant, \(c\) the number of complex primes of \(L\) above real primes of \(K\), \(N=N_{K/{\mathbb Q}}\); then \((-1)^ cN(\Delta)\equiv 0\) or \(1 \bmod 4\); if \(K\) contains \(\mu_ 4\), then \(N(\Delta)\equiv 0, 1\) or \(4 \bmod 8\).
The proof proceeds by reduction to the case where \(L/K\) is a quadratic extension such that \(N(\Delta)\) is odd. In this case, it is shown, by using Hilbert symbols, that \(N(\Delta)\equiv (-1)^ c \bmod 2^{m+1}\) if \(K\) contains \(\mu_{2^ m}\).


11R29 Class numbers, class groups, discriminants
11R11 Quadratic extensions
Full Text: DOI Numdam EuDML


[1] Bergé, A-M. et Martinet, J., Formes quadratiques et extensions en caractéristique 2, Ann. Inst. Fourier35, 2 (1985), 57-77. · Zbl 0539.10018
[2] Frôhlich, A., Discriminants of algebraic number fields, Math. Z.74 (1960), 18-28. · Zbl 0098.03303
[3] Frôhlich, A., Ideals in an extension field as modules over the algebraic integers in a finite number field, Math. Z.74 (1960), 29-38. · Zbl 0098.03401
[4] Hecke, E., “Vorlesungen über die Theorie der algebraischen Zahlen,” Chelsea, New York, 1948 (éd. originale: 1923). · Zbl 0041.01102
[5] Martinet, J., Character theory and Artin L-functions, “Algebraic Number Fields (A. Frôhlich, éd.),” Academic Press, London, New York, 1977, pp. 2-87. · Zbl 0359.12015
[6] Martinet, J., Petits discriminants des corps de nombres, Series 56 (1982), 151-193. · Zbl 0491.12005
[7] Schur, I., Elementarer Beweis eines Satzes von L. Stickelberger, Math. Z.29 (1929), 87-88 (= Ges. Abh., vol. III, pp. 87-88). · JFM 54.0190.01
[8] Serre, J-P., Conducteurs d’Artin des caractères réels, Invent. Math.14 (1971), 173-183. · Zbl 0229.13006
[9] Stickelberger, L., Über eine neue Eigenschaft der Diskriminanten algebraischer Zahlkörper, Int. Cong. Zürich (1897), 182-193. · JFM 29.0172.03
[10] Weil, A., “Automorphic forms and Dirichlet Series,” 189, Heidelberg, 1971. · Zbl 0218.10046
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.