×

zbMATH — the first resource for mathematics

G-convergence of monotone operators. (English) Zbl 0731.35033
Summary: A general notion of G-convergence for sequences of maximal monotone operators of the form \({\mathcal A}_ hu=-div(a_ h(x,Du))\) is introduced in terms of the asymptotic behavior, as \(h\to +\infty\), of the solutions \(u_ h\) to the equations \({\mathcal A}_ hu_ h=f_ h\) and of their momenta \(a_ h(x,Du_ h)\). The main results of the paper are the local character of the G-convergence and the G-compactness of some classes of nonlinear monotone operators.

MSC:
35J60 Nonlinear elliptic equations
47H05 Monotone operators and generalizations
35G30 Boundary value problems for nonlinear higher-order PDEs
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML
References:
[1] Ambrosetti, A.; Sbordone, C., Γ-convergenza e G-convergenza per problemi non lineari di tipo ellittico, Boll. Un. Mat. Ital., 13, 352-362, (1976) · Zbl 0345.49004
[2] Attouch, H., Introduction à l’homogénisation d’inéquations variationnelles, Rend. Sem. Mat. Univ. Politec. Torino, Vol. 40, 1-23, (1982) · Zbl 0523.35004
[3] Attouch, H., Variational convergence for functions and operators, (1984), Pitman London · Zbl 0561.49012
[4] Barbu, V.; Precupanu, Th., Convexity and optimization in Banach spaces, (1978), Editura Academiei Bucuresti · Zbl 0379.49010
[5] Bensoussan, A.; Lions, J.-L.; Papanicolaou, G., Asymptotic analysis for periodic structures, (1978), North Holland Amsterdam · Zbl 0411.60078
[6] Boccardo, L.; Gallouet, Th., Homogenization with jumping nonlinearities, Ann. Mat. Pura Appl., Vol. 138, 211-221, (1984) · Zbl 0568.35038
[7] Boccardo, L.; Murat, F., Remarques sur l’homogénéisation de certains problèmes quasi linéaires, Portugal. Math., Vol. 41, 535-562, (1982) · Zbl 0524.35042
[8] Boccardo, L.; Murat, F., Homogénéisation de problèmes quasi linéaires, studio di problemi-limite Della analisi funzionale (bressanone, 1981), 13-51, (1982), Pitagora editrice Bologna
[9] Brezis, H., Opérateurs maximaux monotones et semi-groupes de contractions dans LES espaces de Hilbert, (1973), North-Holland Amsterdam · Zbl 0252.47055
[10] Browder, F. E., Nonlinear operators and nonlinear equations of evolution in Banach spaces, Proceedings of Symposia Pure Math., 18, (1976), American Mathematical Society · Zbl 0176.45301
[11] Castaing, C.; Valadier, M., Convex analysis and measurable multifunctions, Lec. Notes Math., 580, (1977), Springer-Verlag Berlin · Zbl 0346.46038
[12] De Giorgi, E.; Spagnolo, S., Sulla convergenza degli integrali dell’energia per operatori ellittici del secondo ordine, Boll. Un. Mat. Ital., Vol. 8, 391-411, (1973) · Zbl 0274.35002
[13] Fusco, N.; Moscariello, G., On the homogenization of quasilinear divergence structure operators, Ann. Mat. Pura Appl., Vol. 146, 1-13, (1987) · Zbl 0636.35027
[14] Fusco, N.; Moscariello, G., Further results on the homogenization of quasilinear operators, Ricerche Mat., 35, 231-246, (1986) · Zbl 0658.35016
[15] Hiai, F.; Umegaki, H., Integrals, conditional expectations, and martingales of multivalued functions, J. Multivariate Anal., 7, 149-182, (1977) · Zbl 0368.60006
[16] Kuratowski, K., Topology, (1968), Academic Press New York · Zbl 0158.40901
[17] Matzeu, M., Su un tipo di continuità dell’operatore subdifferenziale, Boll. Un. Mat. Ital., Vol. 14-B, 480-490, (1977) · Zbl 0376.28004
[18] Murat, F., H-convergence, Séminaire d’analyse fonctionnelle et numérique, (1977), Université d’Alger
[19] Murat, F., Compacité par compensation, Ann. Scuola Norm. Sup. Pisa Cl. Sci., Vol. 5, 489-507, (1978) · Zbl 0399.46022
[20] Murat, F.; Tartar, L., Homogénéisation d’opérateurs monotones, (1981), Manuscript
[21] Pascali, D.; Sburlan, S., Nonlinear mappings of monotone type, (1978), Editura Academiei Bucuresti · Zbl 0392.47026
[22] Raitum, U. E., On the G-convergence of quasilinear elliptic operators with unbounded coefficients, Soviet Math. Dokl., 24, 472-476, (1981) · Zbl 0501.35033
[23] Sanchez-Palencia, E., Non homogeneous media and vibration theory, Lec. Notes Phys., 127, (1980), Springer-Verlag Berlin · Zbl 0432.70002
[24] Spagnolo, S., Sul limite delle soluzioni di problemi di Cauchy relativi all’equazione del calore, Ann. Scuola Norm. Sup. Pisa Cl. Sci., Vol. 21, 657-699, (1967) · Zbl 0153.42103
[25] Spagnolo, S., Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche, Ann. Scuola Norm. Sup. Pisa Cl. Sci., Vol. 22, 577-597, (1968) · Zbl 0174.42101
[26] Spagnolo, S., Convergence in energy for elliptic operators, Proc. Third Symp. Numer. Solut. Partial Diff. Equat., 469-498, (1976), Academic Press San Diego, (College Park, 1975)
[27] Tartar, L., Cours peccot, (1977), Collège de France Paris
[28] Tartar, L., Quelques remarques sur l’homogénéisation, Proceedings of the Japan-France seminar 1976, Functional analysis and numerical analysis, 469-482, (1978), Japan Society for the Promotion of Science
[29] Tartar, L., Compensated compactness and applications to partial differential equations, nonlinear analysis & mechanics, heriot-watt symposium, vol. IV, Res. Notes Math., Vol. 39, 136-211, (1979), Pitman London
[30] Zhikov, V. V.; Kozlov, S. M.; Oleinik, O. A.; T’en Ngoan, Kha, Averaging and G-convergence of differential operators, Russian Math. Surveys, Vol. 34, 69-147, (1979) · Zbl 0445.35096
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.