zbMATH — the first resource for mathematics

Hilbert-Schmidt Hankel operators on the Bergman space. (English) Zbl 0731.47028
Let \(B_ n\subset {\mathbb{C}}^ n\) be the open unit ball with (normalized) Lebesgue measure \(\nu\). \(L^ 2_ a(B_ n)\) denotes the Bergman space. P is the orthogonal projection from \(L^ 2(B_ n,\nu)\) onto \(L^ 2_ a(B_ n)\). The Hankel operator with symbol \(f\in L^ 2(B_ n,\nu)\) is the densely defined operator \(H_ f: L^ 2_ a(B_ n)\to L^ 2_ a(B_ n)^{\perp}\) by the equality \[ H_ fg=(I-P)(fg),\quad g\in L^ 2_ a(B_ n). \] It is proved that if \(n\geq 2\), then there are no nonzero Hilbert-Schmidt Hankel operators on \(L^ 2_ a(B_ n)\) with antiholomorphic symbols in \(B_ n\).

47B35 Toeplitz operators, Hankel operators, Wiener-Hopf operators
47B10 Linear operators belonging to operator ideals (nuclear, \(p\)-summing, in the Schatten-von Neumann classes, etc.)
47B38 Linear operators on function spaces (general)
30H05 Spaces of bounded analytic functions of one complex variable
Full Text: DOI
[1] J. Arazy and S. D. Fisher, The uniqueness of the Dirichlet space among Möbius-invariant Hilbert spaces, Illinois J. Math. 29 (1985), no. 3, 449 – 462. · Zbl 0555.30021
[2] J. Arazy, S. D. Fisher, and J. Peetre, Möbius invariant function spaces, J. Reine Angew. Math. 363 (1985), 110 – 145. · Zbl 0566.30042
[3] J. Arazy, S. D. Fisher, and J. Peetre, Hankel operators on weighted Bergman spaces, Amer. J. Math. 110 (1988), no. 6, 989 – 1053. · Zbl 0669.47017
[4] Sheldon Axler, The Bergman space, the Bloch space, and commutators of multiplication operators, Duke Math. J. 53 (1986), no. 2, 315 – 332. · Zbl 0633.47014
[5] Sheldon Axler, Bergman spaces and their operators, Surveys of some recent results in operator theory, Vol. I, Pitman Res. Notes Math. Ser., vol. 171, Longman Sci. Tech., Harlow, 1988, pp. 1 – 50. · Zbl 0681.47006
[6] C. A. Berger, L. A. Coburn, and K. H. Zhu, Function theory on Cartan domains and the Berezin-Toeplitz symbol calculus, Amer. J. Math. 110 (1988), no. 5, 921 – 953. · Zbl 0657.32001
[7] D. Békollé, C. A. Berger, L. A. Coburn, and K. H. Zhu, BMO in the Bergman metric on bounded symmetric domains, J. Funct. Anal. 93 (1990), no. 2, 310 – 350. · Zbl 0765.32005
[8] I. C. Gohberg and M. G. Kreĭn, Introduction to the theory of linear nonselfadjoint operators, Translated from the Russian by A. Feinstein. Translations of Mathematical Monographs, Vol. 18, American Mathematical Society, Providence, R.I., 1969. · Zbl 0181.13504
[9] Walter Rudin, Function theory in the unit ball of \?\(^{n}\), Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science], vol. 241, Springer-Verlag, New York-Berlin, 1980. · Zbl 0495.32001
[10] Karel Stroethoff, Compact Hankel operators on the Bergman space, Illinois J. Math. 34 (1990), no. 1, 159 – 174. · Zbl 0687.47019
[11] Richard M. Timoney, Bloch functions in several complex variables. I, Bull. London Math. Soc. 12 (1980), no. 4, 241 – 267. · Zbl 0416.32010
[12] Ke He Zhu, VMO, ESV, and Toeplitz operators on the Bergman space, Trans. Amer. Math. Soc. 302 (1987), no. 2, 617 – 646. · Zbl 0634.47025
[13] Ke He Zhu, Positive Toeplitz operators on weighted Bergman spaces of bounded symmetric domains, J. Operator Theory 20 (1988), no. 2, 329 – 357. · Zbl 0676.47016
[14] Jacques Faraut, Espaces hilbertiens invariants de fonctions holomorphes, Analyse sur les groupes de Lie et théorie des représentations (Kénitra, 1999) Sémin. Congr., vol. 7, Soc. Math. France, Paris, 2003, pp. 101 – 167 (French, with English and French summaries). · Zbl 1044.46023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.