Sekigawa, K.; Vanhecke, L. Four-dimensional almost Kähler Einstein manifolds. (English) Zbl 0731.53026 Ann. Mat. Pura Appl., IV. Ser. 157, 149-160 (1990). Let (M,J,g) be an almost Kähler manifold. The *-Ricci tensor is defined to be the trace of the map \(Z\to R(X,JZ)JY\), where R denotes the curvature tensor of M. M is said to be *-Einstein if the *-Ricci tensor is proportional to g. The authors prove that a 4-dimensional compact almost Kähler manifold which is Einstein and *-Einstein must be Kähler. Reviewer: K.Ogiue (Tokyo) Cited in 1 ReviewCited in 9 Documents MSC: 53B35 Local differential geometry of Hermitian and Kählerian structures 53C25 Special Riemannian manifolds (Einstein, Sasakian, etc.) Keywords:Einstein manifold; almost Kähler manifold; Ricci tensor PDF BibTeX XML Cite \textit{K. Sekigawa} and \textit{L. Vanhecke}, Ann. Mat. Pura Appl. (4) 157, 149--160 (1990; Zbl 0731.53026) Full Text: DOI References: [1] Goldberg, S. I., Integrability of almost Kähler manifolds, Proc. Amer. Math. Soc., 21, 96-100 (1969) · Zbl 0174.25002 [2] Gray, A.; Barros, M.; Naveira, A. M.; Vanhecke, L., The Chern numbers of holomorphic vector bundles and formally holomorphic connections of complex vector bundles over almost complex manifolds, J. Reine Angew. Math., 314, 84-98 (1980) · Zbl 0432.53050 [3] Kobayashi, S.; Nomizu, K., Foundations of differential geometry, II (1969), New York: Interscience Publ., New York · Zbl 0175.48504 [4] Kodaira, K., On the structure of complex analytic surfaces, I, Amer. J. Math., 86, 751-798 (1964) · Zbl 0137.17501 [5] Libermann, P., Classification and conformal properties of almost Hermitian structures, Differential Geometry, János Bolyai Soc., 31, 371-391 (1979) [6] Olszak, Z., A note on almost Kähler manifolds, Bull. Acad. Pol. Soi. sér. Soi. Math. Astronom. Phys., 26, 139-141 (1978) · Zbl 0379.53034 [7] Sekigawa, K., On some 4-dimensional compact Einstein almost Kähler manifolds, Math. Ann., 271, 333-337 (1985) · Zbl 0562.53032 [8] Sekigawa, K., On some compact Einstein almost Kähler manifolds, J. Math. Soc. Japan, 39, 677-684 (1987) · Zbl 0637.53053 [9] Sekigawa, K., On some 4-dimensional compact almost Hermitian manifolds, J. Ramanujan Math. Soc., 2, 101-116 (1987) · Zbl 0668.53019 [10] Tachibana, S., On almost-analytic vectors in almost-Kählerian manifolds, Tôhoku Math. J., 11, 247-265 (1959) · Zbl 0090.38603 [11] Thurston, W. P., Some simple examples of symplectic manifolds, Proc. Amer. Math. Soc., 55, 467-468 (1976) · Zbl 0324.53031 [12] Tricerri, F.; Vanhecke, L., Curvature tensors on almost Hermitian manifolds, Trans. Amer. Math. Soc., 267, 365-398 (1981) · Zbl 0484.53014 [13] Yano, K., Differential geometry on complex and almost complex spaces (1965), New York: Pergamon Press, New York · Zbl 0127.12405 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.