Engelbert, H. J.; Schmidt, W. Strong Markov continuous local martingales and solutions of one- dimensional stochastic differential equations. III. (English) Zbl 0731.60053 Math. Nachr. 151, 149-197 (1991). This is the third part of a deep study by the same authors [see ibid. 143, 167-184 (1989; Zbl 0699.60044) and the paper reviewed above], the concern here being with one-dimensional stochastic differential equations driven by a Wiener process. Section 4, the first section of this paper, provides a survey on existence, uniqueness and other aspects of solutions, while Section 5 discusses conditions under which a strong Markov continuous local martingale is a solution of a one-dimensional stochastic differential equation without drift. Reviewer: A.Dale (Durban) Cited in 2 ReviewsCited in 57 Documents MSC: 60H10 Stochastic ordinary differential equations (aspects of stochastic analysis) 60G44 Martingales with continuous parameter 34F05 Ordinary differential equations and systems with randomness Keywords:stochastic differential equations; survey on existence, uniqueness and other aspects of solutions; strong Markov continuous local martingale Citations:Zbl 0731.60052; Zbl 0699.60044 PDF BibTeX XML Cite \textit{H. J. Engelbert} and \textit{W. Schmidt}, Math. Nachr. 151, 149--197 (1991; Zbl 0731.60053) Full Text: DOI References: [1] Barlow, J. London Math. Soc. (2) 26 pp 330– (1982) [2] and , Strong Existence, Uniqueness and Non-uniqueness in an Equation Involving Local Time. Séminaire de Probabilités XVII. 32–61, Lecture Notes in Mathematics 986, Springer-Verlag, Berlin 1983 [3] Chitashvili, Stochastics 4 pp 281– (1981) · Zbl 0454.60056 [4] Engelbert, Math. Nachr. 143 pp 167– (1989) [5] Engelbert, Math. Nachr. 144 pp 241– (1989) [6] Girsanov, Teor. Verojatnost. i Primenen. 7 pp 336– (1962) [7] A Stochastic Differential Equation for Feller’s One-Dimensional Diffusions. Preprint N/81/72. Friedrich-Schiller-Universität Jena, 1981 [8] Groh, Math. Nachr. 116 pp 337– (1984) [9] Groh, Illinois J. Math. 30 pp 417– (1986) [10] Harrison, Ann. Probab. 9 pp 309– (1981) [11] and , Stochastic Differential Equations and Diffusion Processes. North-Holland, Amsterdam 1981 [12] and , Brownian Motion and Stochastic Calculus. Springer-Verlag, New York 1988 · Zbl 0638.60065 [13] Temps locaux et équations différentielle stochastiques. Thèse 3e cycle, Université de Paris VI, 1982 [14] Applications du temps local aux equations différentielles stochastiques unidimensionelles. Séminaire de Probabilités XVII, 15–31, Lecture Notes in Mathematics 986, Springer-Verlag, Berlin 1983 [15] One-Dimensional Stochastic Differential Equations Involving Local Times of the Unknown Process. Stochastic Analysis and Applications (Swansea, 1983), 51–82, Lecture Notes in Mathematics 1095, Springer-Verlag, Berlin 1984 [16] Stochastic Integrals. Academic-Press, New York–London 1969 [17] Nakao, Osaka J. Math. 9 pp 513– (1972) [18] Okabe, J. Math. Kyoto University 15 pp 455– (1975) [19] Local Time and Pathwise Uniqueness for Stochastic Differential Equations. Séminaire de Probabilités XVI, 201–208, Lecture Notes in Mathematics 920, Springer-Verlag, Berlin 1982 [20] [Russian Text Ignored] 1982 [21] Untersuchungen zu Funktionalen zufälliger Prozesse. Dissertation, Jena 1982 [22] Schmidt, Math. Nachr. 142 pp 135– (1989) [23] and , Some Remarkable Martingales. Séminaire de Probabilités XV, 590–603, Lecture Notes in Mathematics 850, Springer-Verlag, Berlin 1981 [24] Walsh, Astérisques 52–53 pp 37– (1978) [25] Watanabe, Appl. Math. Optim. 2 pp 90– (1975) [26] Etude d’une equation differentielle stochastique avec temps local. Séminaire de Probabilités XVII, 72–77, Lecture Notes in Mathematics 986, Springer-Verlag, Berlin 1983 [27] Yamada, J. Math. Kyoto University 11 pp 155– (1971) [28] Une remarque sur les solutions faibles des équations différentielles stochastiques unidimensionelles. Séminaire de Probabilités XVII, 78–80, Lecture Notes in Mathematics 986, Springer-Verlag, Berlin 1983 [29] On Stochastic Equations. Proceedings of the 2nd Japan–USSR Symp. Probability Theory, 527–530, Lecture Notes in Mathematics 330, Springer-Verlag, Berlin 1973 [30] Decompositions de martingales locales et formules exponentielles. Séminaire de Probabilités X, 432–480, Lecture Notes in Mathematics 511, Springer-Verlag, Berlin 1976 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.