Global solution to isothermal compressible bipolar fluid in a finite channel with nonzero input and output. (English) Zbl 0731.76059

This highly technical paper presents a proof of the global existence of weak solutions in a viscous compressible isothermal bipolar fluid in a finite channel subject to a certain initial boundary value problem.


76N10 Existence, uniqueness, and regularity theory for compressible fluids and gas dynamics
35Q35 PDEs in connection with fluid mechanics
35D05 Existence of generalized solutions of PDE (MSC2000)


[1] M. Feistauer J. Nečas V. Šverák: On the weak compactness of the equation of the compressible flow. Preprint MFF UK Prague (1988).
[2] A. Kufner O. John S. Fučík: Functional spaces. Academia, Prague (1977).
[3] J. Nečas M. Šilhavý: Viscous multipolar fluids. · Zbl 0732.76003
[4] J. Nečas I. Hlaváček: Mathematical Theory of Elastic and Elastico-Plastic Bodies. (1982).
[5] J. Nečas: Introduction to the theory of nonlinear elliptic equations. John Wiley (1986).
[6] J. L. Lions: Quelques methodes de resolution des problems aux limites non lineaires. Dunod, Paris (1969).
[7] J. Nečas A. Novotný M. Šilhavý: Global solution to the compressible isothermal multipolar fluid. · Zbl 0757.35060
[8] J. L. Lions E. Magenes: Problemes aux limites non homogenes et application. Dunod, Paris (1968). · Zbl 0165.10801
[9] M. Padula: Existence of global solutions for 2-dimensional viscous compressible flow. J. Funct. Anal. 69 (1986). · Zbl 0633.76072
[10] H. Gajevski K. Gröger K. Zacharias: Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen. Academia-Verlag, Berlin (1974). · Zbl 0289.47029
[11] J. Kurzweil:
[12] J. Nečas: Les methodes directes en theorie des equations elliptiques. Academia, Prague (1967).
[13] K. Rektorys a kol.:
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.