zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Global stability for infinite-delay, dispersive Lotka-Volterra systems: Weakly interacting populations in nearly identical patches. (English) Zbl 0731.92029
The authors consider the system of equations $$ (1)\quad (du\sp i\sb j/dt)(t)=b\sp i\sb ju\sp i\sb j(t)[r\sp i\sb j- \sum\sp{m}\sb{k=1}\int\sp{0}\sb{-\infty}u\sp k\sb j(t+s)dv\sb j\sp{ik}(s)]+ $$ $$ +\sum\sp{n}\sb{\ell =1}d\sp i\sb{\ell j}(u\sp i\sb{\ell}-u\sp i\sb j),\quad u\sp i\sb j(s)=\phi\sp i\sb j(s)\ge 0,\quad -\infty <s\le 0, $$ where $u\sp i\sb j$ represents the density of species i in habitat j, $1\le i\le m$, $1\le j\le n$; and $v\sb j\sp{ik}$ are bounded, real-valued Borel measures on (-$\infty,0]$ with total variation $\vert v\sb j\sp{ik}\vert$ satisfying $$ \int\sp{0}\sb{-\infty}e\sp{- \gamma\sb 0s}d\vert v\sb j\sp{ik}\vert (s)<\infty$$ for some positive number $\gamma\sb 0$. The dispersal coefficients $d\sp i\sb{\ell j}\ge 0$, $d\sp i\sb{\ell j}\ne d\sp i\sb{j\ell}$ in general, may be functions or functionals of u for one result, but are assumed constant for the main result. The $b\sp i\sb j>0$ are not necessarily nearly independent of j. It is proved that there exists a globally stable equilibrium solution provided that (a) intraspecific competition is strong relative to interspecific coupling (weakly interacting species), (b) the immediate (undelayed) deleterious effect of intraspecific competition on a species growth rate dominates the corresponding delayed effect, and (c) the habitats are nearly identical. The assumption of nearly identical habitats takes the form $$ r\sp i\sb j=r\sp i+\Delta r\sp i\sb j,\quad v\sb j\sp{ik}=v\sp{ik}+\Delta v\sb j\sp{ik}, $$ where $\Delta r\sp i\sb j$ and $\vert \Delta v\sb j\sp{ik}\vert (-\infty,0]$ are small and $v\sp{ik}$ are bounded Borel measures on (-$\infty,0].$ This work is distinguished from previous work principally by the generality of the unbounded delays allowed and by the consideration of multiple, not necessarily identical, habitats. The mathematical techniques are adaptions of those used by {\it R. H. Martin} and {\it H. L. Smith} [Convergence in Lotka-Volterra systems with diffusion and delay, Proc. Workshop Diff. Eq. Appl., Retzhof/Austria 1989, Lect. Notes Pure Appl. Math., Marcel Dekker, New York].

34K20Stability theory of functional-differential equations
34K30Functional-differential equations in abstract spaces
35R10Partial functional-differential equations
34K99Functional-differential equations
Full Text: DOI
[1] Atkinson, F. V., and Haddock, J. R. (1988). On determining phase space for functional differential equations.Funkcialaj Ekvacioj 31, 331-347. · Zbl 0665.45004
[2] Beretta, E., Solimano, F. (1988). A generalization of Volterra models with continuous time delay in population dynamics: Boundedness and global asymptotic stability.SIAM J. Appl. Math. 48, 607-626. · Zbl 0659.92020 · doi:10.1137/0148034
[3] Beretta, E., and Takeuchi, Y. (1988). Global asymptotic stability of Lotka-Volterra diffusion models with continuous time delay.SIAM J. Appl. Math. 48, 627-651. · Zbl 0661.92018 · doi:10.1137/0148035
[4] Berman, A., and Plemmons, R. J. (1979).Nonnegative Matrices in the Mathematical Sciences, Academic Press, New York. · Zbl 0484.15016
[5] Cushing, J. M. (1977).Integrodifferential Equations and Delay Models in Population Dynamics, Lect. Notes Biomath., 20, Springer, New York. · Zbl 0363.92014
[6] Dunkel, G. (1968). Single species model for population growth depending on past history. InSeminar on Differential Equations and Dynamical Systems, Lect. Notes Math., 20, Springer Verlag, New York, 1968, pp. 92-99. · Zbl 0176.50501
[7] Goh, B. S. (1977). Global stability in many species systems.Am. Nat. 111, 135-143. · doi:10.1086/283144
[8] Haddock, Krisztin, T., Terj?ki, J. (1985). Invariance principles for autonomous functional differential equations.J. Integral Eq. 10, 123-136. · Zbl 0592.34047
[9] Haddock, J. R. (1985). Friendly spaces for functional differential equations with infinite delay. In V. Lakshmikantham (ed.),Trends in the Theory and Practice on Nonlinear Analysis, North-Holland, Amsterdam, pp. 173-182. · Zbl 0573.34045
[10] Haddock, J. R., and Hornor, W. E. (1988). Precompactness and convergence in norm of positive orbits in a certain fading memory space.Funkcialaj Ekvacioj 31, 349-361. · Zbl 0665.45005
[11] Hale, J. K., and Kato, J. (1978). Phase space for retarded equations with infinite delay.Funkcialaj Ekvacioj 21, 11-41. · Zbl 0383.34055
[12] Hastings, A. (1978). Global stability in Lotka-Volterra systems with diffusion.J. Math. Biol. 6, 163-168. · Zbl 0393.92013 · doi:10.1007/BF02450786
[13] Hofbauer, J., and Sigmund, K. (1988).The Theory of Evolution and Dynamical Systems, London Math. Soc. Student Texts, 7, Cambridge. · Zbl 0678.92010
[14] Jones, G. S. (1962). The existence of periodic solutions off?(x)=??f(x?1){1+x(x)}.J. Math. Anal. Appl. 5, 435-450. · Zbl 0106.29504 · doi:10.1016/0022-247X(62)90017-3
[15] Kuang, Y. (1989). Global stability and oscillation in delay-differential equations for single-species population growths (submitted for publication).
[16] Kuang, Y., and Smith, H. L. (1989). Global stability in diffusive delay Lotka-Volterra systems.J. Diff. Int. Eq. (in press). · Zbl 0752.34041
[17] Lenhart, S. M., and Travis, C. C. (1986). Global stability of a biological model with time delay.Proc. Am. Math. Soc. 96, 75-78. · Zbl 0602.34044 · doi:10.1090/S0002-9939-1986-0813814-3
[18] Martin, R. H., and Smith, H. L. (1989). Convergence in Lotka-Volterra systems with diffusion and delay. Proc. Workshop Diff. Eq. Appl., Retzhof, Austria, 1989,Lect. Notes Pure Appl. Math., Marcel Dekker, New York. · Zbl 0764.35115
[19] Sawano, K. (1982). Some considerations on the fundamental theorems for functional differential equations with infinite delay.Funkcialaj Ekvacioj 25, 97-104. · Zbl 0536.34041
[20] Seifert, G. (1976). Positively invariant closed sets for systems of delay differential equations.J. Diff. Eq. 22, 292-304. · Zbl 0332.34068 · doi:10.1016/0022-0396(76)90029-2
[21] Seifert, G. (1982). On Caratheodory conditions for functional differential equations with infinite delays.Rocky Mt. J. Math. 12, 615-619. · Zbl 0503.34038 · doi:10.1216/RMJ-1982-12-4-615
[22] Volterra, V. (1931).Le?ons s?r la th?orie math?matique de la lutte pour la vie, Gauthiers-Villiars, Paris. · Zbl 57.0466.02
[23] Walther, H. O. (1975). Existence of a non-constant periodic solution of a nonlinear autonomous functional differential equation representing the growth of a single species population.J. Math. Biol. 1, 227-240. · Zbl 0299.34102 · doi:10.1007/BF01273745
[24] W?rz-Busekros, A. (1978). Global stability in ecological systems with continuous time delay.SIAM J. Appl. Math. 35, 123-134. · Zbl 0394.92026 · doi:10.1137/0135011