×

zbMATH — the first resource for mathematics

On the decomposability of mod 2 cohomological invariants of Weyl groups. (English) Zbl 07310901
Summary: We compute the invariants of Weyl groups in mod 2 Milnor \(K\)-theory and more general cycle modules, which are annihilated by 2. Over a base field of characteristic coprime to the group order, the invariants decompose as direct sums of the coefficient module. All basis elements are induced either by Stiefel-Whitney classes or specific invariants in the Witt ring. The proof is based on Serre’s splitting principle that guarantees detection of invariants on elementary abelian 2-subgroups generated by reflections.
MSC:
20G10 Cohomology theory for linear algebraic groups
12G05 Galois cohomology
Software:
CHEVIE
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] N. Bourbaki,Éléments de mathématique. Groupes et algèbres de Lie. Chapitres 4, 5, et 6, Masson, Paris, 1981.Zbl 0483.22001 MR 647314 · Zbl 0498.12001
[2] A. Delzant, Définition des classes de Stiefel-Whitney d’un module quadratique sur un corps de caractéristique différente de2(French),C. R. Acad. Sci. Paris,255(1962), 1366-1368.Zbl 0108.04303 MR 142606 · Zbl 0108.04303
[3] J. Ducoat, Cohomological invariants of finite Coxeter groups, 2011.arXiv:1112.6283
[4] S. Garibaldi, A. Merkurjev, and J.-P. Serre, Cohomological invariants, Witt invariants, and trace forms. Notes by Skip Garibaldi, inCohomological invariants in Galois cohomology, 1-100, Univ. Lecture Ser., 28, Amer. Math. Soc., Providence, RI, 2003.Zbl 1159.12311 MR 1999384
[5] M. Geck, G. Hiss, F. Lübeck, G. Malle, and G. Pfeiffer, CHEVIE - a system for computing and processing generic character tables. Computational methods in Lie theory (Essen, 1994),Appl. Algebra Engrg. Comm. Comput.,7(1996), no. 3, 175-210.Zbl 0847.20006 MR 1486215 · Zbl 0847.20006
[6] S. Gille and C. Hirsch, On the splitting principle for cohomological invariants of reflection groups, 2019.arXiv:1908.08146
[7] C. Hirsch,Cohomological invariants of reflection groups, Diplomarbeit, LMU Munich, 2010.
[8] J. Humphreys,Reflection groups and Coxeter groups, Cambridge Studies in Advanced Mathematics, 29, Cambridge University Press, Cambridge, 1990.Zbl 0725.20028 MR 1066460 · Zbl 0725.20028
[9] R. Kane,Reflection groups and invariant theory, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 5, Springer-Verlag, New York, 2001.Zbl 0986.20038 MR 1838580 · Zbl 0986.20038
[10] M. Knus, A. Merkurjev, M. Rost, and J.-P. Tignol,The book of involutions. With a preface in French by J. Tits, American Mathematical Society Colloquium Publications, 44, American Mathematical Society, Providence, RI, 1998.Zbl 0955.16001 MR 1632779 · Zbl 0955.16001
[11] D. Orlov, A. Vishik, and V. Voevodsky, An exact sequence forKM=2with applications to quadratic forms,Ann. of Math. (2),165(2007), no. 1, 1-13.Zbl 1124.14017 MR 2276765 · Zbl 1124.14017
[12] M. Rost, Chow groups with coefficients,Doc. Math.,1(1996), no. 16, 319-393. Zbl 0864.14002 MR 1418952 · Zbl 0864.14002
[13] J.-P. Serre,Galois cohomology. Translated from the French by Patrick Ion and revised by the author, Springer-Verlag, Berlin, 1997.Zbl 0902.12004 MR 1466966
[14] J.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.