×

zbMATH — the first resource for mathematics

Estimation of impact forces during multi-point collisions involving small deformations. (English) Zbl 07314300
Summary: Collision between hard objects causes abrupt changes in the velocities of the system, which are characterized by very large contact forces over very small time durations. A common approach in the analysis of such collisions is to describe the system velocities using an impulse-momentum based relationship. The time duration of impact and the deformations at the contact points are usually assumed to be negligible for such an impact models, and the system velocities are evolved in terms of the impulses on the system. This type of impact models are usually relevant for hard (rigid) impacts, where deformations at the contact points can be considered negligible. However, these models cannot determine the forces during the impact process. The main objective of this work is to reformulate the impulse-momentum based model to determine the forces during an impact event, by relaxing the rigidity assumption to allow small deformations at the contact points.
MSC:
70F35 Collision of rigid or pseudo-rigid bodies
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Anitescu, M.; Potra, F. A.; Stewart, D. E., Time-stepping for three-dimensional rigid body dynamics, Comput. Methods Appl. Mech. Eng., 177, 3, 183-197 (1999) · Zbl 0967.70003
[2] Awrejcewicz, J.; Kudra, G., Rolling resistance modelling in the celtic stone dynamics, Multibody Syst. Dyn., 45, 2, 155-167 (2019)
[3] Boulanger, G., Sur le choc avec frottement des corps non parfaitement élastiques, Rev. Sci., 77, 325-327 (1939) · JFM 65.1491.01
[4] Bowling, A., Dynamic performance, mobility, and agility of multi-legged robots, J. Dyn. Syst. Meas. Control, 128, 4, 765-777 (2006)
[5] Brake, M., An analytical elastic-perfectly plastic contact model, Int. J. Solids Struct., 49, 22, 3129-3141 (2012)
[6] Brogliato, B., Nonsmooth Mechanics: Models, Dynamics and Control (1999), London: Springer, London · Zbl 0917.73002
[7] Brogliato, B.; Ten Dam, A., Numerical simulation of finite dimensional multibody nonsmooth mechanical systems, Appl. Mech. Rev., 55, 2, 107-149 (2002)
[8] Chakraborty, N.; Berard, S.; Akella, S.; Trinkle, J. C., An implicit time-stepping method for multibody systems with intermittent contact, Robotics: Science and Systems (2007) · Zbl 1330.70068
[9] Chatterjee, A.; Bowling, A., Resolving the unique invariant slip-direction in rigid three-dimensional multi-point impacts at stick-slip transitions, ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, V006T09A008-V006T09A008 (2018), New York: American Society of Mechanical Engineers, New York
[10] Chatterjee, A.; Bowling, A., Modeling three-dimensional surface-to-surface rigid contact and impact, Multibody Syst. Dyn., 46, 1-40 (2019)
[11] Chatterjee, A.; Rodriguez, A.; Bowling, A., Analytic solution for planar indeterminate impact problems using an energy constraint, Multibody Syst. Dyn., 42, 3, 347-379 (2018) · Zbl 1400.70019
[12] Craig, J., Introduction to Robotics: Mechanics and Control (1989), Reading: Addison-Wesley, Reading · Zbl 0711.68103
[13] Darboux, G., Etude géométrique sur les percussions et le choc des corps, Bull. Sci. Math. Astron., 4, 1, 126-160 (1880) · JFM 12.0683.02
[14] Djerassi, S., Collision with friction; Part A: Newton’s hypothesis, Multibody Syst. Dyn., 21, 1, 37-54 (2009) · Zbl 1163.70007
[15] Djerassi, S., Collision with friction; Part B: Poisson’s and Stronge’s hypotheses, Multibody Syst. Dyn., 21, 1, 55-70 (2009) · Zbl 1163.70008
[16] Djerassi, S., Stronge’s hypothesis-based solution to the planar collision-with-friction problem, Multibody Syst. Dyn., 24, 4, 493-515 (2010) · Zbl 1375.70052
[17] Djerassi, S., Three-dimensional, one-point collision with friction, Multibody Syst. Dyn., 27, 2, 173-195 (2012) · Zbl 1344.70030
[18] Dormand, J.; Prince, P., A family of embedded Runge-Kutta formulae, J. Comput. Appl. Math., 6, 1, 19-26 (1980) · Zbl 0448.65045
[19] Flickinger, D.; Bowling, A., Simultaneous oblique impacts and contacts in multibody systems with friction, Multibody Syst. Dyn., 23, 3, 249-261 (2010) · Zbl 1376.70008
[20] Flores, P.; Machado, M.; Silva, M. T.; Martins, J. M., On the continuous contact force models for soft materials in multibody dynamics, Multibody Syst. Dyn., 25, 3, 357-375 (2011) · Zbl 1263.70007
[21] Ghaednia, H.; Brake, M. R.; Berryhill, M.; Jackson, R. L., Strain hardening from elastic-perfectly plastic to perfectly elastic flattening single asperity contact, J. Tribol., 141, 3 (2019)
[22] Ghaednia, H.; Cermik, O.; Marghitu, D. B., Experimental and theoretical study of the oblique impact of a tennis ball with a racket, Proc. Inst. Mech. Eng., Part P: J. Sports Eng. Technol., 229, 3, 149-158 (2015)
[23] Gharib, M.; Hurmuzlu, Y., A new contact force model for low coefficient of restitution impact, J. Appl. Mech., 79, 6 (2012)
[24] Gheadnia, H.; Cermik, O.; Marghitu, D. B., Experimental and theoretical analysis of the elasto-plastic oblique impact of a rod with a flat, Int. J. Impact Eng., 86, 307-317 (2015)
[25] Gholami, F.; Nasri, M.; Kövecses, J.; Teichmann, M., A linear complementarity formulation for contact problems with regularized friction, Mech. Mach. Theory, 105, 568-582 (2016)
[26] Gilardi, G.; Sharf, I., Literature survey of contact dynamics modeling, Mech. Mach. Theory, 37, 10, 1213-1239 (2002) · Zbl 1062.70553
[27] Giouvanidis, A.; Dimitrakopoulos, I., Modelling contact in rocking structures with a nonsmooth dynamics approach, ECCOMAS Congress 2016-Proceedings of the 7th European Congress on Computational Methods in Applied Sciences and Engineering, 0000 (2016)
[28] Glocker, C.; Studer, C., Formulation and preparation for numerical evaluation of linear complementarity systems in dynamics, Multibody Syst. Dyn., 13, 4, 447-463 (2005) · Zbl 1114.70008
[29] Goldsmith, W., Impact (2001), New York: Courier Corporation, New York · Zbl 0986.74001
[30] Gonthier, Y.; McPhee, J.; Lange, C.; Piedboeuf, J.-C., A regularized contact model with asymmetric damping and dwell-time dependent friction, Multibody Syst. Dyn., 11, 3, 209-233 (2004) · Zbl 1143.74344
[31] Hertz, H.: Über die Berührung fester elastischer Körper (On the Contact of Elastic Solids). Reine und Angewandte Mathematik. London: (Instruction anglaise dans miscellaneous papers by H. Hertz) Eds. Jones et Schaott, 1896 · JFM 25.0904.01
[32] Huněk, I., On a penalty formulation for contact-impact problems, Comput. Struct., 48, 2, 193-203 (1993) · Zbl 0779.73062
[33] Hunt, K.; Crossley, F. R.E., Coefficient of restitution interpreted as damping in vibroimpact, J. Appl. Mech., 42, 2, 440-445 (1975)
[34] Jackson, R. L.; Green, I., A finite element study of elasto-plastic hemispherical contact against a rigid flat, J. Tribol., 127, 2, 343-354 (2005)
[35] Jaeger, J., New Solutions in Contact Mechanics (2005), Southampton: Wit Press, Southampton · Zbl 1065.74001
[36] Jia, Y.-B., Energy-based modeling of tangential compliance in 3-dimensional impact, Algorithmic Foundations of Robotics IX, 267-284 (2011), Berlin: Springer, Berlin · Zbl 1220.70006
[37] Johnson, K. L.; Johnson, K. L., Contact Mechanics (1987), Cambridge: Cambridge University Press, Cambridge · Zbl 0599.73108
[38] Kane, T.; Levinson, D., Dynamics: Theory and Applications (1985), New York: McGraw-Hill, New York
[39] Kardel, K.; Ghaednia, H.; Carrano, A. L.; Marghitu, D. B., Experimental and theoretical modeling of behavior of 3d-printed polymers under collision with a rigid rod, Addit. Manuf., 14, 87-94 (2017)
[40] Keller, J., Impact with friction, J. Appl. Mech., 53, 1, 1-4 (1986) · Zbl 0592.73028
[41] Kireenkov, A., Coupled models of sliding and rolling friction, Dokl. Phys., 53, 4, 233-236 (2008) · Zbl 1257.74109
[42] Kireenkov, A., Coulomb law in generalized differential form in problems of dynamics of rigid bodies with combined kinematics, Mech. Solids, 45, 2, 166-175 (2010)
[43] Kosenko, I.; Aleksandrov, E., Implementation of the Contensou-Erismann model of friction in frame of the hertz contact problem on modelica, Proceedings of the 7th International Modelica Conference, No. 043, 288-298 (2009), Linköping: Linköping University Electronic Press, Linköping
[44] Kraus, P. R.; Kumar, V., Compliant contact models for rigid body collisions, Robotics and Automation, 1997. Proceedings., 1997 IEEE International Conference on, 1382-1387 (1997), New York: IEEE, New York
[45] Kudra, G.; Szewc, M.; Ludwicki, M.; Awrejcewicz, J., Modeling and simulation of bifurcation dynamics of a double spatial pendulum excited by a rotating obstacle, Int. J. Struct. Stab. Dyn., 19, 12 (2019)
[46] Kudra, G.; Szewc, M.; Wojtunik, I.; Awrejcewicz, J., Shaping the trajectory of the billiard ball with approximations of the resultant contact forces, Mechatronics, 37, 54-62 (2016)
[47] Lankarani, H., Contact force model with hysteresis damping for impact analysis of multibody systems, J. Mech. Des., 112, 3, 369-376 (1990)
[48] Lankarani, H.; Nikravesh, P., A contact force model with hysteresis damping for impact analysis of multibody systems, J. Mech. Des., 112, 3, 369-376 (1990)
[49] Leine, R. I.; Glocker, C., A set-valued force law for spatial Coulomb-Contensou friction, Eur. J. Mech. A, Solids, 22, 2, 193-216 (2003) · Zbl 1038.74513
[50] Liu, C.; Zhao, Z.; Brogliato, B., Frictionless multiple impacts in multibody systems. I. Theoretical framework, Proc. R. Soc. A, Math. Phys. Eng. Sci., 464, 2100, 3193-3211 (2008) · Zbl 1186.70012
[51] Liu, C., Zhao, Z., Brogliato, B.: Variable structure dynamics in a bouncing dimer. Ph.D. dissertation, INRIA (2008)
[52] Liu, C.; Zhao, Z.; Brogliato, B., Frictionless multiple impacts in multibody systems. II. Numerical algorithm and simulation results, Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci., 465, 1-23 (2009) · Zbl 1186.70011
[53] Liu, T., Non-jamming conditions in multi-contact rigid-body dynamics, Multibody Syst. Dyn., 22, 3, 269-295 (2009) · Zbl 1248.70007
[54] Liu, T.; Wang, M. Y., Computation of three-dimensional rigid-body dynamics with multiple unilateral contacts using time-stepping and Gauss-Seidel methods, IEEE Trans. Autom. Sci. Eng., 2, 1, 19-31 (2005)
[55] Marghitu, D.; Stoenescu, E., Rigid body impact with moment of rolling friction, Nonlinear Dyn., 50, 3, 597-608 (2007) · Zbl 1193.70026
[56] Marhefka, D. W.; Orin, D. E., A compliant contact model with nonlinear damping for simulation of robotic systems, IEEE Trans. Syst. Man Cybern., Part A, Syst. Hum., 29, 6, 566-572 (1999)
[57] Moreau, J., Numerical aspects of the sweeping process, Comput. Methods Appl. Mech. Eng., 177, 3, 329-349 (1999) · Zbl 0968.70006
[58] Papadopoulos, P.; Solberg, J., A Lagrange multiplier method for the finite element solution of frictionless contact problems, Math. Comput. Model., 28, 4, 373-384 (1998) · Zbl 1002.74590
[59] Peña, F.; Lourenço, P. B.; Campos-Costa, A., Experimental dynamic behavior of free-standing multi-block structures under seismic loadings, J. Earthq. Eng., 12, 6, 953-979 (2008)
[60] Peña, F.; Prieto, F.; Lourenço, P. B.; Campos Costa, A.; Lemos, J. V., On the dynamics of rocking motion of single rigid-block structures, Earthq. Eng. Struct. Dyn., 36, 15, 2383-2399 (2007)
[61] Pfeiffer, F.; Glocker, C., Multi-Body Dynamics with Unilateral Constraints (1996), New York: Wiley, New York · Zbl 0922.70001
[62] Putignano, C.; Afferrante, L.; Carbone, G.; Demelio, G., A new efficient numerical method for contact mechanics of rough surfaces, Int. J. Solids Struct., 49, 2, 338-343 (2012)
[63] Roberts, S. M.; Shipman, J. S., Two-Point Boundary Value Problems: Shooting Methods (1972), New York: Am. Elsevier, New York · Zbl 0239.65061
[64] Rodriguez, A.: Dynamic simulation of multibody systems in simultaneous, indeterminate contact and impact with friction. Ph.D. dissertation, UTA (2014)
[65] Rodriguez, A.; Bowling, A., Solution to indeterminate multi-point impact with frictional contact using constraints, Multibody Syst. Dyn., 28, 4, 313-330 (2012)
[66] Rodriguez, A.; Bowling, A., Study of Newton’s cradle using a new discrete approach, Multibody Syst. Dyn., 33, 1, 61-92 (2015)
[67] Rodriguez, A.; Chatterjee, A.; Bowling, A., Solution to three-dimensional indeterminate contact and impact with friction using rigid body constraints, ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, V006T10A037-V006T10A037 (2015), New York: American Society of Mechanical Engineers, New York
[68] Routh, E. J., Dynamics of a System of Rigid Bodies (1960), New York: Dover, New York · JFM 17.0315.02
[69] Shampine, L. F.; Reichelt, M. W., The Matlab ode suite, SIAM J. Sci. Comput., 18, 1, 1-22 (1997) · Zbl 0868.65040
[70] Sharf, I.; Zhang, Y., A contact force solution for non-colliding contact dynamics simulation, Multibody Syst. Dyn., 16, 3, 263-290 (2006) · Zbl 1207.70006
[71] Simo, J. C.; Laursen, T., An augmented Lagrangian treatment of contact problems involving friction, Comput. Struct., 42, 1, 97-116 (1992) · Zbl 0755.73085
[72] Skrinjar, L.; Slavič, J.; Boltežar, M., A review of continuous contact-force models in multibody dynamics, Int. J. Mech. Sci., 145, 171-187 (2018)
[73] Stewart, D. E.; Trinkle, J. C., An implicit time-stepping scheme for rigid body dynamics with inelastic collisions and Coulomb friction, Int. J. Numer. Methods Eng., 39, 15, 2673-2691 (1996) · Zbl 0882.70003
[74] Stewart, D., Rigid-body dynamics with friction and impact, SIAM Rev., 42, 1, 3-39 (2000) · Zbl 0962.70010
[75] Stronge, W., Impact Mechanics (2000), Cambridge: Cambridge University Press, Cambridge · Zbl 0961.74002
[76] Stronge, W., Chain reaction from impact on aggregate of elasto-plastic ‘rigid’ bodies, Int. J. Impact Eng., 28, 3, 291-302 (2003)
[77] Stronge, W., Smooth dynamics of oblique impact with friction, Int. J. Impact Eng., 51, 36-49 (2013)
[78] Vigué, P.; Vergez, C.; Karkar, S.; Cochelin, B., Regularized friction and continuation: comparison with Coulomb’s law, J. Sound Vib., 389, 350-363 (2017)
[79] Wang, Y.-T.; Kumar, V.; Abel, J., Dynamics of rigid bodies undergoing multiple frictional contacts, Robotics and Automation, 1992. Proceedings., 1992 IEEE International Conference on, 2764-2769 (1992), New York: IEEE, New York
[80] Whittaker, E., A Treatise on the Analytical Dynamics of Particles and Rigid Bodies (1917), Cambridge: Cambridge University Press, Cambridge
[81] Wriggers, P.; Zavarise, G., Computational contact mechanics, Encyclopedia of Computational Mechanics (2004)
[82] Yastrebov, V. A.; Anciaux, G.; Molinari, J.-F., From infinitesimal to full contact between rough surfaces: evolution of the contact area, Int. J. Solids Struct., 52, 83-102 (2015)
[83] Yigit, A. S.; Christoforou, A. P.; Majeed, M. A., A nonlinear visco-elastoplastic impact model and the coefficient of restitution, Nonlinear Dyn., 66, 4, 509-521 (2011)
[84] Zhang, H.; Brogliato, B.; Liu, C., Dynamics of planar rocking-blocks with Coulomb friction and unilateral constraints: comparisons between experimental and numerical data, Multibody Syst. Dyn., 32, 1, 1-25 (2014)
[85] Zhang, H., Brogliato, B.: The planar rocking-block: analysis of kinematic restitution laws, and a new rigid-body impact model with friction. Ph.D. dissertation, INRIA (2011)
[86] Zhao, Z.; Liu, C.; Brogliato, B., Planar dynamics of a rigid body system with frictional impacts. II. Qualitative analysis and numerical simulations, Proc. R. Soc. A, Math. Phys. Eng. Sci., 465, 2107, 2267-2292 (2009) · Zbl 1186.70010
[87] Zhao, Z.; Liu, C.; Brogliato, B., Energy dissipation and dispersion effects in granular media, Phys. Rev. E, 78, 3 (2008)
[88] Zhao, Z.; Liu, C.; Brogliato, B., Planar dynamics of a rigid body system with frictional impacts. II. Qualitative analysis and numerical simulations, Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci., 465, 2267-2292 (2009) · Zbl 1186.70010
[89] Zhuravlev, V., The model of dry friction in the problem of the rolling of rigid bodies, J. Appl. Math. Mech., 62, 5, 705-710 (1998)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.