×

zbMATH — the first resource for mathematics

A fully implicit finite volume scheme for single phase flow with reactive transport in porous media. (English) Zbl 07316717
Summary: Single phase flow and reactive transport modelling involve solving a highly nonlinear coupled system of partial differential equations to algebraic or ordinary differential equations requiring special numerical treatment. In this paper, we propose a fully implicit finite volume method using a direct substitution approach to improve the efficiency and the accuracy of numerical computations for such systems. The approach has been developed and implemented in the framework of the parallel open-source platform DuMu\(^X\). The object oriented code allows solving reactive transport problems considering different coupling approaches. A number of 2D and 3D numerical tests were performed for verifying and demonstrating the capability of the coupled fully implicit approach for single phase flow and reactive transport in porous media. Numerical results for the reactive transport benchmark of MoMaS and long-term fate of injected \(\mathrm{CO}_2\) for geological storage including a comparison between the direct substitution approach and the sequential iterative approach are presented. Parallel scalability is investigated for simulations with different grid resolutions.
MSC:
65Y Computer aspects of numerical algorithms
65N Numerical methods for partial differential equations, boundary value problems
Software:
DuMuX; DUNE; HYTEC; MIN3P; MoMaS; SPECY
PDF BibTeX XML Cite
Full Text: DOI
References:
[4] Ahmad, N.; Wörman, A.; Bottacin-Busolin, A.; Sanchez-Vila, X., Reactive transport modeling of leaking CO \({}_2\)-saturated brine along a fractured pathway, Int. J. Greenh. Gas Control, 42, 672-689 (2015)
[5] Ahmad, N.; Wörman, A.; Sanchez-Vila, X.; Jarsjö, J.; Bottacin-Busolin, A.; Hellevang, H., Injection of CO \({}_2\) saturated brine in geological reservoir: A way to enhanced storage safety, Int. J. Greenh. Gas Control, 54, 129-144 (2016)
[6] Ahusborde, E.; Amaziane, B.; El Ossmani, M., Finite volume scheme for coupling twophase flow with reactive transport in porous media, (Finite Volumes for Complex Applications VIII-Hyperbolic, Elliptic and Parabolic Problems. Finite Volumes for Complex Applications VIII-Hyperbolic, Elliptic and Parabolic Problems, Springer Proceedings in Mathematics and Statistics, vol. 200 (2017)), 407-415 · Zbl 1365.76295
[7] Ahusborde, E.; El Ossmani, M., A sequential approach for numerical simulation of two-phase multicomponent flow with reactive transport in porous media, Math. Comput. Simulation, 137, 71-89 (2017)
[8] Ahusborde, E.; Kern, M.; Vostrikov, V., Numerical simulation of two-phase multicomponent flow with reactive transport in porous media: Application to geological sequestration of CO \({}_2\), ESAIM: Proc. Surv., 50, 21-39 (2015) · Zbl 1382.76179
[9] Al-Khoury, R.; Bundschuh, J., Computational Models for CO \({}_2\) Geo-sequestration & Compressed Air Energy Storage (2014), Sustainable Energy Developments, CRC Press
[10] Amir, L.; Kern, M., A global method for coupling transport with chemistry in heterogeneous porous media, Comput. Geosci., 14, 3, 465-481 (2010) · Zbl 1425.76231
[11] Barry, D. A.; Miller, C. T.; Culligan-Hensley, P. J., Temporal discretisation errors in non-iterative split-operator approaches to solving chemical reaction/groundwater transport models, J. Contam. Hydrol., 22, 1-2, 1-17 (1996)
[12] Bastian, P.; Blatt, M.; Dedner, A.; Engwer, C.; Klöfkorn, R.; Kornhuber, R.; Ohlberger, M.; Sander, O., A generic grid interface for parallel and adaptive scientific computing. Part II: Implementation and tests in DUNE, Computing, 82, 121-138 (2008) · Zbl 1151.65088
[13] Bastian, P.; Blatt, M.; Dedner, A.; Engwer, C.; Klöfkorn, R.; Ohlberger, M.; Sander, O., A generic grid interface for parallel and adaptive scientific computing. Part I: Abstract framework, Computing, 82, 103-119 (2008) · Zbl 1151.65089
[14] Bethke, C., Geochemical and Biogeochemical Reaction Modeling (2007), Cambridge University Press
[15] Buchholzer, H.; Kanzow, C.; Knabner, P.; Kräutle, S., The semismooth Newton method for the solution of reactive transport problems including mineral precipitation-dissolution reactions, Comput. Optim. Appl., 50, 193-221 (2011) · Zbl 1236.90146
[16] Carrayrou, J., Looking for some reference solutions for the reactive transport benchmark of MoMaS with SPECY, Comput. Geosci., 14, 3, 393-403 (2010) · Zbl 1425.76235
[17] Carrayrou, J.; Hoffmann, J.; Knabner, P.; Kräutle, S.; de Dieuleveult, C.; Erhel, J.; Van der Lee, J.; Lagneau, V.; Mayer, K. U.; MacQuarrie, K. T.B., Comparison of numerical methods for simulating strongly nonlinear and heterogeneous reactive transport problems – the MoMaS benchmark case, Comput. Geosci., 14, 3, 483-502 (2010) · Zbl 1426.76723
[18] Carrayrou, J.; Kern, M.; Knabner, P., Reactive transport benchmark of MoMaS, Comput. Geosci., 14, 385-392 (2010) · Zbl 1425.76236
[19] on Climate Change (IPCC), I. P., IPCC Special Report on Carbon Dioxide Capture and Storage, (Metz, B.; Davidson, O.; de Coninck, H. C.; Loos, M.; Meyer, L. A., IPCC Special Report on Carbon Dioxide Capture and Storage (2005), Cambridge University Press), URL: http://www.ipcc.ch/pdf/special-reports/srccs/srccs_wholereport.pdf, prepared by Working Group III of the Intergovernmental Panel on Climate Change
[20] de Dieuleveult, C.; Erhel, J., A global approach to reactive transport: Application to the MoMaS benchmark, Comput. Geosci., 14, 3, 451-464 (2010) · Zbl 1425.76294
[21] Erhel, J.; Sabit, S., Analysis of a global reactive transport model and results for the MoMaS benchmark, Math. Comput. Simulation, 137, 286-298 (2017)
[22] Fan, Y.; Durlofsky, L. J.; Tchelepi, H. A., A fully-coupled flow-reactive-transport formulation based on element conservation, with application to CO \({}_2\) storage simulations, Adv. Water Resour., 42, 47-61 (2012)
[23] Fischer, A., A special Newton-type optimization method, Optimization, 269-284 (1992) · Zbl 0814.65063
[25] Haeberlein, F., Time Space Domain Decomposition Methods for Reactive Transport - Application to CO \({}_2\) Geological Storage (2011), Université Paris-Nord — Paris XIII
[26] Helmig, R., Multiphase Flow and Transport Processes in the Subsurface: A Contribution to the Modeling of Hydrosystems (1997), Springer
[27] Hoffman, J., Reactive Transport and Mineral Dissolution/Precipitation in Porous Media: Efficient Solution Algorithms, Benchmark Computations and Existence of Global Solutions (2010), University of Erlangen
[28] Hoffmann, J.; Kräutle, S.; Knabner, P., A parallel global-implicit 2-D solver for reactive transport problems in porous media based on a reduction scheme and its application to the MoMaS benchmark problem, Comput. Geosci., 14, 421-433 (2010) · Zbl 1425.76240
[29] Hoffmann, J.; Kräutle, S.; Knabner, P., A general reduction scheme for reactive transport in porous media, Comput. Geosci., 14, 1081-1099 (2012)
[30] Jiang, X., A review of physical modelling and numerical simulation of long-term geological storage of CO \({}_2\), Appl. Energy, 88, 3557-3566 (2011)
[31] Kräutle, S., General Multi-Species Reactive Transport Problems in Porous Media: Efficient Numerical Approaches and Existence of Global Solutions (2008), University of Erlangen: University of Erlangen Germany, (Habilitation thesis)
[32] Kräutle, S.; Knabner, P., A new numerical reduction scheme for fully coupled multicomponent transport-reaction problems in porous media, Water Resour. Res., 41, 9, 1-17 (2005)
[33] Kräutle, S.; Knabner, P., A reduction scheme for coupled multicomponent transport-reaction problems in porous media: Generalization to problems with heterogeneous equilibrium reactions, Water Resour. Res., 43, 3 (2007)
[34] Lagneau, V.; van der Lee, J., HYTEC results of the MoMaS reactive transport benchmark, Comput. Geosci., 14, 3, 435-449 (2010) · Zbl 1425.76247
[35] Lagneau, V.; Pipart, A.; Catalette, H., Reactive transport modelling of CO \({}_2\) sequestration in deep saline aquifers, Oil Gas Sci. Technol., 60, 231-247 (2005)
[36] Lauser, A.; Hager, C.; Helmig, R.; Wohlmuth, B., A new approach for phase transitions in miscible multi-phase flow in porous media, Adv. Water Resour., 34, 957-966 (2011)
[37] Lichtner, P. C., Continuum model for simultaneous chemical reactions and mass transport in hydrothermal systems, Geochim. Cosmochim. Acta, 49, 3, 779-800 (1985)
[38] Mayer, K. U.; MacQuarrie, K. T.B., Solution of the MoMaS reactive transport benchmark with MIN3P-model formulation and simulation results, Comput. Geosci., 14, 405-419 (2010) · Zbl 1426.76690
[39] Molins, S.; Carrera, J.; Ayora, C.; Saaltink, M. W., A formulation for decoupling components in reactive transport problems, Water Resour. Res., 40, 10, 1-13 (2004)
[40] Morel, F. M.; Hering, J. G., Principles and Applications of Aquatic Chemistry (1993), Wiley: Wiley New York
[41] Nicot, J.-P.; Hosseini, S. A.; Solano, S. V., Are single-phase flow numerical models sufficient to estimate pressure distribution in CO \({}_2\) sequestration projects?, Energy Procedia, 4, 3919-3926 (2011)
[42] Niemi, A.; Bear, J.; Bensabat, J., Geological Storage of CO \({}_2\) in Deep Saline Formations (2017), Springer
[43] Pool, M.; Carrera, J.; Vilarrasa, V.; Silva, O.; Ayora, C., Dynamics and design of systems for geological storage of dissolved CO \({}_2\), Adv. Water Resour., 62, 533-542 (2013)
[44] Steefel, C. I.; MacQuarrie, K. T.B, Approaches to modeling of reactive transport in porous media, Rev. Mineral., 34, 82-129 (1996)
[45] Valocchi, A. J.; Malmstead, M., Accuracy of operator splitting for advection-dispersion-reaction problems, Water Resour. Res., 28, 5, 1471-1476 (1992)
[46] Yeh., G. T.; Tripathi, V. S., A model for simulating transport of reactive multispecies components: Model development and demonstration, Water Resour. Res., 27, 12, 3075-3094 (1991)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.