×

zbMATH — the first resource for mathematics

Volumetric density-equalizing reference map with applications. (English) Zbl 07316872
Summary: The density-equalizing map, a technique developed for cartogram creation, has been widely applied to data visualization but only for 2D applications. In this work, we propose a novel method called the volumetric density-equalizing reference map for computing density-equalizing map for volumetric domains. Given a prescribed density distribution in a volumetric domain in \(\mathbb{R}^3\), the proposed method continuously deforms the domain, with different volume elements enlarged or shrunk according to the density distribution. With the aid of the proposed method, medical and sociological data can be visualized via deformations of 3D objects. The method can also be applied to adaptive remeshing and shape modeling. Furthermore, by exploiting the time-dependent nature of the proposed method, applications to shape morphing can be easily achieved. Experimental results are presented to demonstrate the effectiveness of the proposed method.
MSC:
68U05 Computer graphics; computational geometry (digital and algorithmic aspects)
65D18 Numerical aspects of computer graphics, image analysis, and computational geometry
76R50 Diffusion
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Gastner, MT; Newman, MEJ, Diffusion-based method for producing density-equalizing maps, Proc. Natl. Acad. Sci., 101, 20, 7499-7504 (2004) · Zbl 1063.86005
[2] Wake, DB; Vredenburg, VT, Are we in the midst of the sixth mass extinction? A view from the world of amphibians, Proc. Natl. Acad. Sci., 105, 1, 11466-11473 (2008)
[3] Dorling, D.; Newman, M.; Barford, A., The Atlas of the Real World: Mapping the Way We Live (2010), High Holborn: Thames & Hudson, High Holborn
[4] Pan, RK; Kaski, K.; Fortunato, S., World citation and collaboration networks: uncovering the role of geography in science, Sci. Rep., 2, 902 (2012)
[5] Matthews, HD; Graham, TL; Keverian, S.; Lamontagne, C.; Seto, D.; Smith, TJ, National contributions to observed global warming, Environ. Res. Lett., 9, 1, 014010 (2014)
[6] Dodd, PJ; Sismanidis, C.; Seddon, JA, Global burden of drug-resistant tuberculosis in children: a mathematical modelling study, Lancet Infect. Dis., 16, 10, 1193-1201 (2016)
[7] Ballas, D.; Dorling, D.; Hennig, B., Analysing the regional geography of poverty, austerity and inequality in Europe: a human cartographic perspective, Reg. Stud., 51, 1, 174-185 (2017)
[8] Choi, GPT; Rycroft, CH, Density-equalizing maps for simply connected open surfaces, SIAM J. Imaging Sci., 11, 2, 1134-1178 (2018) · Zbl 1401.68347
[9] Gastner, MT; Seguy, V.; More, P., Fast flow-based algorithm for creating density-equalizing map projections, Proc. Natl. Acad. Sci., 115, 10, E2156-E2164 (2018) · Zbl 1416.62666
[10] Choi, GPT; Chiu, B.; Rycroft, CH, Area-preserving mapping of 3D carotid ultrasound images using density-equalizing reference map, IEEE Trans. Biomed. Eng., 1-11, 2507-2517 (2020)
[11] Kamrin, K.; Rycroft, CH; Nave, J-C, Reference map technique for finite-strain elasticity and fluid-solid interaction, J. Mech. Phys. Solids, 60, 11, 1952-1969 (2012)
[12] Valkov, B.; Rycroft, CH; Kamrin, K., Eulerian method for multiphase interactions of soft solid bodies in fluids, J. Appl. Mech., 82, 4, 041011 (2015)
[13] Rycroft, C. H., Wu, C.-H., Yu, Y., Kamrin, K.: Reference Map Technique for Incompressible Fluid-Structure Interaction. arXiv:1810.03015 · Zbl 1460.76177
[14] Gurtin, ME; Fried, E.; Anand, L., The Mechanics and Thermodynamics of Continua (2010), Cambridge: Cambridge University Press, Cambridge
[15] Govindjee, S.; Mihalic, PA, Computational methods for inverse finite elastostatics, Comput. Methods Appl. Mech. Eng., 136, 1-2, 47-57 (1996) · Zbl 0918.73117
[16] Fachinotti, VD; Cardona, A.; Jetteur, P., Finite element modelling of inverse design problems in large deformations anisotropic hyperelasticity, Int. J. Numer. Methods Eng., 74, 6, 894-910 (2008) · Zbl 1158.74369
[17] Courant, R.; Friedrichs, K.; Lewy, H., Über die partiellen differenzengleichungen der mathematischen physik, Math. Ann. (in German), 100, 1, 32-74 (1928) · JFM 54.0486.01
[18] Saad, Y., ILUT: a dual threshold incomplete LU factorization, Numer. Linear Algebra Appl., 1, 4, 387-402 (1994) · Zbl 0838.65026
[19] Lin, C-J; Moré, JJ, Incomplete Cholesky factorizations with limited memory, SIAM J. Sci. Comput., 21, 1, 24-45 (1999) · Zbl 0941.65033
[20] Frigo, M.; Johnson, SG, The design and implementation of FFTW3, Proc. IEEE, 93, 2, 216-231 (2005)
[21] Frigo, M., Johnson, S.G.: FFTW. http://www.fftw.org
[22] Marieb, E.; Hoehn, K., Human Anatomy and Physiology (2007), San Francisco: Pearson Benjamin Cummings, San Francisco
[23] Cortical Homunculus. https://en.wikipedia.org/wiki/Cortical_homunculus
[24] Mancini, F.; Bauleo, A.; Cole, J.; Lui, F.; Porro, CA; Haggard, P.; Iannetti, GD, Whole-body mapping of spatial acuity for pain and touch, Ann. Neurol., 75, 6, 917-924 (2014)
[25] American Airlines. https://www.aa.com
[26] SeatGuru. https://www.seatguru.com
[27] The Stanford 3D Scanning Repository. http://graphics.stanford.edu/data/3Dscanrep/
[28] 3D Segmentation Benchmark. http://193.48.251.101/3dsegbenchmark/bust.html
[29] Choi, GP-T; Ho, KT; Lui, LM, Spherical conformal parameterization of genus-0 point clouds for meshing, SIAM J. Imaging Sci., 9, 4, 1582-1618 (2016) · Zbl 1354.65034
[30] Choi, GP-T; Man, MH-Y; Lui, LM, Fast spherical quasiconformal parameterization of genus-\(0\) closed surfaces with application to adaptive remeshing, Geom. Imaging Comput., 3, 1-2, 1-29 (2016) · Zbl 1396.65027
[31] Persson, P-O; Strang, G., A simple mesh generator in MATLAB, SIAM Rev., 46, 2, 329-345 (2004) · Zbl 1061.65134
[32] Hildebrandt, K.; Schulz, C.; Tycowicz, CV; Polthier, K., Interactive surface modeling using modal analysis, ACM Trans. Graph., 30, 5, 119 (2011)
[33] Choi, PT; Lam, KC; Lui, LM, FLASH: fast landmark aligned spherical harmonic parameterization for genus-0 closed brain surfaces, SIAM J. Imaging Sci., 8, 1, 67-94 (2015) · Zbl 1316.65028
[34] Lee, YT; Lam, KC; Lui, LM, Landmark-matching transformation with large deformation via n-dimensional quasi-conformal maps, J. Sci. Comput., 67, 3, 926-954 (2016) · Zbl 1342.30015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.