zbMATH — the first resource for mathematics

An efficient multi-objective optimization algorithm based on level swarm optimizer. (English) Zbl 07318118
Summary: In the past few decades, evolutionary multi-objective optimization has become a research hotspot in the field of evolutionary computing, and a large number of multi-objective evolutionary algorithms (MOEAs) have been proposed. However, MOEA is still faced with the problem that the diversity and convergence of non-dominated solutions are difficult to balance. To address these problems, an efficient multi-objective optimization algorithm based on level swarm optimizer (EMOSO) is proposed in this paper. In EMOSO, a sorting method is introduced to balance the diversity and convergence of non-dominated solutions in the whole population, which is based on non-dominated relationship and density estimation. Meanwhile, a level-based learning strategy is introduced to maintain the search for non-dominated solutions. Finally, DTLZ, ZDT and WFG series problems are utilized to verify the performance of the proposed EMOSO. Experimental results and statistical analysis indicate that EMOSO has competitive performance compared with 6 popular MOEAs. The source code of EMOSO is provided at: https://github.com/xuweizhang163/EMOSO.
90C Mathematical programming
Full Text: DOI
[1] Abbass, H. A.; Sarker, R.; Newton, C., Pde: a pareto-frontier differential evolution approach for multi-objective optimization problems, (Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No. 01TH8546), Vol. 2 (2001), IEEE), 971-978
[2] Bader, J.; Zitzler, E., Hype: An algorithm for fast hypervolume-based many-objective optimization, Evol. Comput., 19, 1, 45-76 (2011)
[3] Beume, N.; Naujoks, B.; Emmerich, M., Sms-emoa: Multiobjective selection based on dominated hypervolume, European J. Oper. Res., 181, 3, 1653-1669 (2007) · Zbl 1123.90064
[4] Cai, X.; Hu, M.; Gong, D.; Guo, Y.-n.; Zhang, Y.; Fan, Z.; Huang, Y., A decomposition-based coevolutionary multiobjective local search for combinatorial multiobjective optimization, Swarm Evol. Comput. (2019)
[5] Cao, L.; Xu, L.; Goodman, E. D.; Li, H., Decomposition-based evolutionary dynamic multiobjective optimization using a difference model, Appl. Soft Comput., 76, 473-490 (2019)
[6] Cheng, T.; Chen, M.; Fleming, P. J.; Yang, Z.; Gan, S., A novel hybrid teaching learning based multi-objective particle swarm optimization, Neurocomputing, 222, 11-25 (2017)
[7] Cheng, R.; Jin, Y.; Olhofer, M.; Sendhoff, B., A reference vector guided evolutionary algorithm for many-objective optimization, IEEE Trans. Evol. Comput., 20, 5, 773-791 (2016)
[8] Coello, C. A.C.; Cortés, N. C., Solving multiobjective optimization problems using an artificial immune system, Genet. Program. Evol. Mach., 6, 2, 163-190 (2005)
[9] Coello, C. C.; Lechuga, M. S., Mopso: A proposal for multiple objective particle swarm optimization, (Proceedings of the 2002 Congress on Evolutionary Computation. CEC’02 (Cat. No. 02TH8600), Vol. 2 (2002), IEEE), 1051-1056
[10] Dai, C.; Wang, Y.; Ye, M., A new multi-objective particle swarm optimization algorithm based on decomposition, Inform. Sci., 325, 541-557 (2015)
[11] Deb, K.; Jain, S., Running Performance Metrics for Evolutionary Multi-Objective Optimization (2002), Citeseer
[12] Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T., A fast and elitist multiobjective genetic algorithm: Nsga-ii, IEEE Trans. Evol. Comput., 6, 2, 182-197 (2002)
[13] Deb, K.; Thiele, L.; Laumanns, M.; Zitzler, E., Scalable test problems for evolutionary multiobjective optimization, (Evolutionary Multiobjective Optimization (2005), Springer), 105-145 · Zbl 1078.90567
[14] Derrac, J.; García, S.; Molina, D.; Herrera, F., A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms, Swarm Evol. Comput., 1, 1, 3-18 (2011)
[15] Eberhart, R.; Kennedy, J., A new optimizer using particle swarm theory, (Micro Machine and Human Science, 1995. MHS’95., Proceedings of the Sixth International Symposium on (1995), IEEE), 39-43
[16] Goldberg, D. E.; Korb, B.; Deb, K., Messy genetic algorithms: Motivation, analysis, and first results, Complex Syst., 3, 5, 493-530 (1989) · Zbl 0727.68097
[17] He, X.; Zhou, Y.; Chen, Z.; Zhang, Q., Evolutionary many-objective optimization based on dynamical decomposition, IEEE Trans. Evol. Comput., 23, 3, 361-375 (2018)
[18] Huband, S.; Barone, L.; While, L.; Hingston, P., A scalable multi-objective test problem toolkit, (International Conference on Evolutionary Multi-Criterion Optimization (2005), Springer), 280-295 · Zbl 1109.68603
[19] Li, K.; Deb, K.; Zhang, Q.; Kwong, S., An evolutionary many-objective optimization algorithm based on dominance and decomposition, IEEE Trans. Evol. Comput., 19, 5, 694-716 (2014)
[20] Li, Z.; Li, S.; Yue, C.; Shang, Z.; Qu, B., Differential evolution based on reinforcement learning with fitness ranking for solving multimodal multiobjective problems, Swarm Evol. Comput., 49, 234-244 (2019)
[21] Li, B.; Tang, K.; Li, J.; Yao, X., Stochastic ranking algorithm for many-objective optimization based on multiple indicators, IEEE Trans. Evol. Comput., 20, 6, 924-938 (2016)
[22] Li, L.; Wang, W.; Xu, X., Multi-objective particle swarm optimization based on global margin ranking, Inform. Sci., 375, 30-47 (2017)
[23] Li, M.; Yang, S.; Liu, X., Shift-based density estimation for pareto-based algorithms in many-objective optimization, IEEE Trans. Evol. Comput., 18, 3, 348-365 (2013)
[24] Liang, Y.; Huang, H.; Cai, Z.; Hao, Z., Multiobjective evolutionary optimization based on fuzzy multicriteria evaluation and decomposition for image matting, IEEE Trans. Fuzzy Syst., 27, 5, 1100-1111 (2019)
[25] Lin, Q.; Li, J.; Du, Z.; Chen, J.; Ming, Z., A novel multi-objective particle swarm optimization with multiple search strategies, European J. Oper. Res., 247, 3, 732-744 (2015) · Zbl 1346.90742
[26] Lin, Q.; Liu, S.; Zhu, Q.; Tang, C.; Song, R.; Chen, J.; Coello, C. A.C.; Wong, K.-C.; Zhang, J., Particle swarm optimization with a balanceable fitness estimation for many-objective optimization problems, IEEE Trans. Evol. Comput., 22, 1, 32-46 (2016)
[27] Liu, J.; Li, F.; Kong, X.; Huang, P., Handling many-objective optimisation problems with r2 indicator and decomposition-based particle swarm optimiser, Internat. J. Systems Sci., 50, 2, 320-336 (2019)
[28] Peng, W.; Zhang, Q., A decomposition-based multi-objective particle swarm optimization algorithm for continuous optimization problems, (2008 IEEE International Conference on Granular Computing (2008), IEEE), 534-537
[29] di Pierro, F.; Khu, S.-T.; Savic, D. A., An investigation on preference order ranking scheme for multiobjective evolutionary optimization, IEEE Trans. Evol. Comput., 11, 1, 17-45 (2007)
[30] Shang, R.; Jiao, L.; Liu, F.; Ma, W., A novel immune clonal algorithm for mo problems, IEEE Trans. Evol. Comput., 16, 1, 35-50 (2011)
[31] Srinivas, N.; Deb, K., Muiltiobjective optimization using nondominated sorting in genetic algorithms, Evol. Comput., 2, 3, 221-248 (1994)
[32] Tang, L.; Wang, X.; Dong, Z., Adaptive multiobjective differential evolution with reference axis vicinity mechanism, IEEE Trans. Cybern., 49, 9, 3571-3585 (2018) · Zbl 1409.94640
[33] Tian, Y.; Cheng, R.; Zhang, X.; Jin, Y., Platemo: A matlab platform for evolutionary multi-objective optimization [educational forum], IEEE Comput. Intell. Mag., 12, 4, 73-87 (2017)
[34] Tian, Y.; Zheng, X.; Zhang, X.; Jin, Y., Efficient large-scale multiobjective optimization based on a competitive swarm optimizer, IEEE Trans. Cybern. (2019)
[35] Wang, R.; Purshouse, R. C.; Fleming, P. J., Preference-inspired coevolutionary algorithms for many-objective optimization, IEEE Trans. Evol. Comput., 17, 4, 474-494 (2012)
[36] Wang, Y.-N.; Wu, L.-H.; Yuan, X.-F., Multi-objective self-adaptive differential evolution with elitist archive and crowding entropy-based diversity measure, Soft Comput., 14, 3, 193 (2010)
[37] Wang, Y.; Yang, Y., Particle swarm optimization with preference order ranking for multi-objective optimization, Inform. Sci., 179, 12, 1944-1959 (2009)
[38] While, L.; Bradstreet, L.; Barone, L., A fast way of calculating exact hypervolumes, IEEE Trans. Evol. Comput., 16, 1, 86-95 (2011)
[39] Yang, Q.; Chen, W.-N.; Da Deng, J.; Li, Y.; Gu, T.; Zhang, J., A level-based learning swarm optimizer for large-scale optimization, IEEE Trans. Evol. Comput., 22, 4, 578-594 (2017)
[40] Yang, S.; Li, M.; Liu, X.; Zheng, J., A grid-based evolutionary algorithm for many-objective optimization, IEEE Trans. Evol. Comput., 17, 5, 721-736 (2013)
[41] Yue, C.; Qu, B.; Liang, J., A multiobjective particle swarm optimizer using ring topology for solving multimodal multiobjective problems, IEEE Trans. Evol. Comput., 22, 5, 805-817 (2017)
[42] Zapotecas Martínez, S.; Coello Coello, C. A., A multi-objective particle swarm optimizer based on decomposition, (Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation (2011), ACM), 69-76
[43] Zhang, Y.; Gong, D.-w.; Sun, J.-y.; Qu, B.-y., A decomposition-based archiving approach for multi-objective evolutionary optimization, Inform. Sci., 430, 397-413 (2018)
[44] Zhang, Q.; Li, H., Moea/d: A multiobjective evolutionary algorithm based on decomposition, IEEE Trans. Evol. Comput., 11, 6, 712-731 (2007)
[45] Zhang, X.; Tian, Y.; Cheng, R.; Jin, Y., An efficient approach to nondominated sorting for evolutionary multiobjective optimization, IEEE Trans. Evol. Comput., 19, 2, 201-213 (2014)
[46] Zhang, X.; Tian, Y.; Cheng, R.; Jin, Y., A decision variable clustering-based evolutionary algorithm for large-scale many-objective optimization, IEEE Trans. Evol. Comput., 22, 1, 97-112 (2016)
[47] Zhang, H.; Wu, J.; Sun, C.; Zhong, M.; Yang, R., A multi-objective particle swarm optimizer based on simulated annealing and decomposition, (2018 5th IEEE International Conference on Cloud Computing and Intelligence Systems (CCIS) (2018), IEEE), 262-273
[48] Zhang, X.; Zheng, X.; Cheng, R.; Qiu, J.; Jin, Y., A competitive mechanism based multi-objective particle swarm optimizer with fast convergence, Inform. Sci., 427, 63-76 (2018)
[49] Zitzler, E.; Deb, K.; Thiele, L., Comparison of multiobjective evolutionary algorithms: Empirical results, Evol. Comput., 8, 2, 173-195 (2000)
[50] Zitzler, E.; Künzli, S., Indicator-based selection in multiobjective search, (International Conference on Parallel Problem Solving from Nature (2004), Springer), 832-842
[51] Zitzler, E.; Thiele, L., Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach, IEEE Trans. Evol. Comput., 3, 4, 257-271 (1999)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.