zbMATH — the first resource for mathematics

Hydrogen-helium chemical and nuclear galaxy collision: hydrodynamic simulations on AVX-512 supercomputers. (English) Zbl 07319205
Summary: A computational hydrodynamic model of interacting galaxies is presented. The interstellar medium (ISM) is described by a model of gravitational multicomponent single-velocity hydrodynamics. A model based on first moments of the collisionless Boltzmann equation is used to describe the stellar component and dark matter. Subgrid processes of star formation and supernovae feedback, as well as cooling and heating functions are added to the hydrodynamic model. The computational model includes chemical and nuclear reactions of the basic forms of hydrogen and helium before the formation of the helium hydride ion. The hydrodynamic equations have a suitable form for solving by a unified computational method based on the “Harten-Lax-van Leer” (HLL) method. The equations and the numerical method are written in vector form to use advanced vector extensions AVX-512 to speed up the calculations. A parallel implementation of the model and some computational simulation experiments on the chemical dynamics of interacting galaxies are presented.

65M Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
35L Hyperbolic equations and hyperbolic systems
Full Text: DOI
[1] Khim, H., Demographics of isolated galaxies along the hubble sequence, Astrophys. J. Suppl. Ser., 220, 1, Article 3 pp. (2015)
[2] Willet, K., Galaxy zoo 2: detailed morphological classifications for 304 122 galaxies from the sloan digital sky survey, Mon. Not. R. Astron. Soc., 435, 4, 2835-2860 (2013)
[3] Galloway, M., Galaxy zoo: the effect of bar-driven fuelling on the presence of an active galactic nucleus in disc galaxies, Mon. Not. R. Astron. Soc., 448, 4, 3442-3454 (2015)
[4] Smethurst, R., Galaxy zoo: evidence for diverse star formation histories through the green valley, Mon. Not. R. Astron. Soc., 450, 1, 435-453 (2015)
[5] Willet, K., Galaxy zoo: the dependence of the star formation stellar mass relation on spiral disc morphology, Mon. Not. R. Astron. Soc., 449, 1, 820-827 (2015)
[6] Mayer, L.; Governato, F.; Kaufmann, T., The formation of disk galaxies in computer simulations, Adv. Sci. Lett., 1, 7-27 (2008)
[7] Steinmetz, M., Numerical simulations of galaxy formation, Astrophys. Space Sci., 269-270, 513-532 (1999)
[8] Milgrom, M., A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis, Astrophys. J., 270, 365-370 (1983)
[9] Chilingarian, I.; Di Matteo, P.; Combes, F.; Melchior, A.; Semelin, B., The galmer database: galaxy mergers in the virtual observatory, Astron. Astrophys., 518, 61A, 1-14 (2010)
[10] Moreno, J., Interacting galaxies on FIRE-2: the connection between enhanced star formation and interstellar gas content, Mon. Not. R. Astron. Soc., 485, 1, 1320-1338 (2019)
[11] Tutukov, A.; Lazareva, G.; Kulikov, I., Gas dynamics of a central collision of two galaxies: Merger, disruption, passage, and the formation of a new galaxy, Astron. Rep., 55, 9, 770-783 (2011)
[12] Schweizer, F., Merger-induced starbursts, Astrophys. Space Sci. Libr., 329, 143-152 (2005)
[13] Sol Alonso, M.; Lambas, D.; Tissera, P.; Coldwell, G., Active galactic nuclei and galaxy interactions, Mon. Not. R. Astron. Soc., 375, 3, 1017-1024 (2007)
[14] Blecha, L.; Loeb, A.; Narayan, R., Double-peaked narrow-line signatures of dual supermassive black holes in galaxy merger simulations, Mon. Not. R. Astron. Soc., 429, 3, 2594-2616 (2013)
[15] Rodriguez, C.; Taylor, G.; Zavala, R.; Pihlstrom, Y.; Peck, A., Hi observations of the supermassive binary black hole system in 0402+379, Astrophys. J., 697, 1, 37-44 (2009)
[16] Combes, F.; Melchior, A., Chemodynamical evolution of interacting galaxies, Astrophys. Space Sci., 281, 1-2, 383-387 (2002)
[17] Harten, A.; Lax, P. D.; Leer, B. Van., On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws, Vol. 25, 35-61 (1983), Society for Industrial and Applied Mathematics · Zbl 0565.65051
[18] Einfeld, B., On godunov-type methods for gas dynamics, SIAM J. Numer. Anal., 25, 294-318 (1988)
[19] Batten, P.; Clarke, N.; Lambert, C.; Causon, D. M., On the choice of wavespeeds for the HLLC Riemann solver, SIAM J. Comput., 18, 1553-1570 (1997) · Zbl 0992.65088
[20] Ziegler, U., Self-gravitational adaptive mesh magnetohydrodynamics with the NIRVANA code, Astron. Astrophys., 435, 385-395 (2005)
[21] Teyssier, R., Cosmological hydrodynamics with adaptive mesh refinement. a new high resolution code called RAMSES, Astron. Astrophys., 385, 337-364 (2002)
[22] Stone, J., Athena: A new code for astrophysical MHD, Astrophys. J. Suppl. Ser., 178, 137-177 (2008)
[23] Mignone, A., PLUTO: a numerical code for computational astrophysics, Astrophys. J. Suppl. Ser., 170, 228-242 (2007)
[24] Lora-Clavijo, F.; Cruz-Osorio, A.; Guzman, F., CAFE: a new relativistic MHD code, Astrophys. J. Suppl. Ser., 218, 2, Article 24 pp. (2015)
[25] van der Holst, B., CRASH: a block-adaptive-mesh code for radiative shock hydrodynamics implementation and verification, Astrophys. J. Suppl. Ser., 194, 2, Article 23 pp. (2011)
[26] Kappeli, R.; Whitehouse, S.; Scheidegger, S.; Pen, U.-L.; Liebendorfer, M., FISH: a three-dimensional parallel magnetohydrodynamics code for astrophysical applications, Astrophys. J. Suppl. Ser., 195, 2, Article 20 pp. (2011)
[27] Cardall, C.; Budiardja, R.; Endeve, E.; Mezzacappa, A., Genasis: general astrophysical simulation system. I. refinable mesh and nonrelativistic hydrodynamics, Astrophys. J. Suppl. Ser., 210, 2, Article 17 pp. (2014)
[28] Vshivkov, V.; Lazareva, G.; Snytnikov, A.; Kulikov, I.; Tutukov, A., Hydrodynamical code for numerical simulation of the gas components of colliding galaxies, Astrophys. J. Suppl. Ser., 194, 2, Article 47 pp. (2011)
[29] Kulikov, I., Gpupegas: a new gpu-accelerated hydrodynamic code for numerical simulations of interacting galaxies, Astrophys. J. Suppl. Ser., 214, 1, Article 12 pp. (2014)
[30] Kulikov, I.; Chernykh, I.; Tutukov, A., A new hydrodynamic model for numerical simulation of interacting galaxies on intel xeon phi supercomputers, J. Phys. Conf. Ser., 719, Article 012006 pp. (2016)
[31] Vorobyov, E.; Recchi, S.; Hensler, G., Stellar hydrodynamical modeling of dwarf galaxies: simulation methodology, tests, and first results, Astron. Astrophys., 579, Article A9 pp. (2015)
[32] Katz, N.; Weinberg, D.; Hernquist, L., Cosmological simulations with treesph, Astrophys. J. Suppl. Ser., 105, 19-35 (1996)
[33] Springel, V.; Hernquist, L., Cosmological smoothed particle hydrodynamics simulations: a hybrid multiphase model for star formation, Mon. Not. R. Astron. Soc., 339, 2, 289-311 (2003)
[34] Kroupa, P., On the variation of the initial mass function, Mon. Not. R. Astron. Soc., 322, 2, 231-246 (2001)
[35] Padovani, P.; Matteucci, F., Stellar mass loss in elliptical galaxies and the fueling of active galactic nuclei, Astrophys. J., 416, 26-35 (1993)
[36] Van den Hoek, L. B.; Groenewegen, M. A.T., New theoretical yields of intermediate mass stars, Astron. Astrophys. Suppl. Ser., 123, 2, 305-328 (1997)
[37] Matteucci, F.; Recchi, S., On the typical timescale for the chemical enrichment from type ia supernovae in galaxies, Astrophys. J., 558, 351-358 (2001)
[38] Dalgarno, A.; McCray, R. A., Heating and ionization of HI regions, Annu. Rev. Astron. Astrophys., 10, 375-426 (1972)
[39] Boehringer, H.; Hensler, G., Metallicity-dependence of radiative cooling in optically thin, hot plasmas, Astron. Astrophys., 215, 1, 147-149 (1989)
[40] Van Dishoeck, E. F.; Black, J. H., Comprehensive models of diffuse interstellar clouds - physical conditions and molecular abundances, Astrophys. J. Suppl. Ser., 62, 109-145 (1986)
[41] Bakes, E. L.O.; Tielens, A. G.G. M., The photoelectric heating mechanism for very small graphitic grains and polycyclic aromatic hydrocarbons, Astrophys. J., 427, 2, 822-838 (1994)
[42] Mezcua, M., Dwarf galaxies might not be the birth sites of supermassive black holes, Nat. Astron., 3, 6-7 (2019)
[43] Gusten, R., Astrophysical detection of the helium hydride ion heh \({}^+\), Nature, 568, 357-359 (2019)
[44] Lepp, S., The cosmic-ray ionization rate, (Astrochemistry of Cosmic Phenomena: Proceedings of the 150th Symposium of the International Astronomical Union, Held At Campos Do Jordao, Sao Paulo, Brazil, August (1991) 5-9 (1992)), 471-475
[45] Janev, R. K.; Langer, W. D.; Evans, K. J.; Post, D. E.J., Elementary processes in hydrogen-helium plasmas, (Cross Sections and Reaction Rate Coefficients. Cross Sections and Reaction Rate Coefficients, Springer Series on Atomic, Optical, and Plasma Physics, vol. 4 (1987)), 326
[46] Ferland, G. J.; Peterson, B. M.; Horne, K.; Welsh, W. F.; Nahar, S. N., Anisotropic line emission and the geometry of the broad-line region in active galactic nuclei, Astrophys. J., 387, 95-108 (1992)
[47] Abel, T.; Anninos, P.; Zhang, Y.; Norman, M., Modeling primordial gas in numerical cosmology, New Astron., 2, 3, 181-207 (1997)
[48] Wishart, A. W., The bound-free photo-detachment cross-section of h \({}^-\), Mon. Not. R. Astron. Soc., 187, 1, 59-60 (1979)
[49] Shapiro, P.; Kang, H., Hydrogen molecules and the radiative cooling of pregalactic shocks, Astrophys. J., 318, 32-65 (1987)
[50] Karpas, Z.; Anicich, V.; W. T., Huntress Jr., An ion cyclotron resonance study of reactions of ions with hydrogen atoms, J. Chem. Phys., 70, 6, 2877-2881 (1979)
[51] Donahue, M.; Shull, J. M., New photoionization models of intergalactic clouds, Astrophys. J., 383, 511-523 (1991)
[52] Dalgarno, A.; Lepp, S.; Vardya, M. S.; Tarafdar, S. P., Astrochemistry, 109 (1987)
[53] Schneider, I. F.; Dulieu, O.; Giusti-Suzor, A.; Roueff, E., Dissociate recombination of H2(+) molecular ions in hydrogen plasmas between 20 k and 4000 k, Astrophys. J., 424, 983-987 (1994)
[54] Grassi, T.; Bovino, S.; Schleicher, D.; Prieto, J.; Seifried, D.; Simoncini, E.; Gianturco, F., KROME - A package to embed chemistry in astrophysical simulations, Mon. Not. R. Astron. Soc., 439, 3, 2386-2419 (2014)
[55] Dove, J.; Mandy, M., The rate of dissociation of molecular hydrogen by hydrogen atoms at very low densities, Astrophys. J., 311, L93-L96 (1986)
[56] Hollenbach, D.; McKee, C. F., Molecule formation and infrared emission in fast interstellar shocks. i physical processes, Astrophys. J. Suppl. Ser., 41, 555-592 (1979)
[57] Glover, S.; Mac Low, M., Simulating the formation of molecular clouds. I. Slow formation by gravitational collapse from static initial conditions, Astrophys. J. Suppl. Ser., 169, 2, 239-268 (2007)
[58] Cen, R., A hydrodynamic approach to cosmology: Methodology, Astrophys. J. Suppl. Ser., 78, 2, 341-364 (1992)
[59] Osterbrock, D. E., Astrophys. Gaseous Nebul., 263 (1974)
[60] Zygelman, B.; Dalgarno, A., The radiative association of he \({}^+\) and h, Astrophys. J., 365, 239-240 (1990)
[61] Stromholm, C., Dissociative recombination and dissociative excitation of 4heh \({}^+\): absolute cross sections and mechanisms, Phys. Rev. A, 54, 3086-3094 (1996)
[62] Bovino, S.; Tacconi, M.; Gianturco, F. A.; Galli, D., Ion chemistry in the early universe. Revisiting the role of heh+ with new quantum calculations, Astron. Astrophys., 529, Article A140 pp. (2011)
[63] Glover, S.; Mac Low, M., Simulating the formation of molecular clouds. II. Rapid formation from turbulent initial conditions, Astrophys. J., 659, 2, 1317-1337 (2007)
[64] Kulikov, I.; Vorobyov, E., Using the PPML approach for constructing a low-dissipation, operator-splitting scheme for numerical simulations of hydrodynamic flows, J. Comput. Phys., 317, 318-346 (2016) · Zbl 1349.76350
[65] Chernykh, I.; Stoyanovskaya, O.; Zasypkina, O., Chempak software package as an environment for kinetics scheme evaluation, Chem. Prod. Process Model., 4, 3 (2009)
[66] Frigo, M.; Johnson, S., The design and implementation of FFTW3, Proc. IEEE, 93, 2, 216-231 (2005)
[67] Kulikov, I. M.; Chernykh, I. G.; Glinskiy, B. M.; Protasov, V. A., An efficient optimization of HLL method for the second generation of intel xeon phi processor, Lobachevskii J. Math., 39, 4, 543-550 (2018) · Zbl 1442.85001
[68] Kulikov, I. M.; Chernykh, I. G.; Snytnikov, A. V.; Glinskiy, B. M.; Tutukov, A. V., Astrophi: A code for complex simulation of dynamics of astrophysical objects using hybrid supercomputers, Comput. Phys. Comm., 186, 71-80 (2015)
[69] Kulikov, I.; Chernykh, I., Numerical modeling of jellyfish galaxy at intel xeon phi supercomputers, (2017 Ivannikov ISPRAS Open Conference (ISPRAS) (2018)), 104-109
[70] I. Kulikov, B. Chernykh I. Glinskiy, D. Weins, A. Shmelev, Astrophysics simulation on RSC massively parallel architecture, in: Proceedings - 2015 IEEE/ACM 15th International Symposium on Cluster, Cloud, and Grid Computing, CCGrid 2015, 2015, pp. 1131-1134.
[71] Cautun, M.; Deason, A.; Frenk, C.; McAlpine, S., The aftermath of the great collision between our galaxy and the large magellanic cloud, Mon. Not. R. Astron. Soc., 483, 2, 2185-2196 (2019)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.