A generalized hybrid CGPM-based algorithm for solving large-scale convex constrained equations with applications to image restoration. (English) Zbl 1464.65069

Summary: In this paper, by improving a line search criterion to yield steplength, and designing a hybrid conjugate parameter to construct sufficient descent direction, we propose a generalized hybrid conjugate gradient projection method for solving large-scale monotone nonlinear equations with convex constraints. For the proposed method, we prove its global convergence under some mild conditions, and study its convergence rate. Numerical comparisons with two existing methods show that our method is promising for solving large-scale nonlinear constrained equations. Furthermore, the experiment results of dealing with image restoration problems also verify that the proposed method is effective.


65K10 Numerical optimization and variational techniques
65D18 Numerical aspects of computer graphics, image analysis, and computational geometry


Full Text: DOI


[1] Ortega, J. M.; Rheinboldt, W. C., Iterative Solution of Nonlinear Equations in Several Variables (1970), Academic Press: Academic Press New York · Zbl 0241.65046
[2] Dirkse, S. P.; Ferris, M. C., MCPLIB: A collection of nonlinear mixed complementarity problems, Optim. Methods Softw., 5, 4, 319-345 (1995)
[3] Chen, J.; Mangasarian, O. L., A class of smoothing functions for nonlinear and mixed complementarity problems, Comput. Optim. Appl., 5, 2, 97-138 (1996) · Zbl 0859.90112
[4] Wood, A. J.; Wollenberg, B. F., Power Generation, Operation, and Control (1996), Wiley: Wiley New York
[5] Yang, L. F.; Luo, J. Y.; Xu, Y.; Zhang, Z. R.; Dong, Z. Y., A distributed dual consensus ADMM based on partition for DC-DOPF with carbon emission trading, IEEE Trans. Ind. Inform., 16, 3, 1858-1872 (2020)
[6] Sun, D. F.; Womersley, R. S.; Qi, H. D., A feasible semismooth asymptotically Newton method for mixed complementarity problems, Math. Program., 94, 1, 167-187 (2002) · Zbl 1023.90068
[7] Tong, X. J.; Zhou, S. Z., A smoothing projected Newton-type method for semismooth equations with bound constraints, J. Ind. Manag. Optim., 1, 2, 235-250 (2005) · Zbl 1177.90389
[8] Wang, C. W.; Wang, Y. J.; Xu, C. L., A projection method for a system of nonlinear monotone equations with convex constraints, Math. Methods Oper. Res., 66, 1, 33-46 (2007) · Zbl 1126.90067
[9] Qi, L. Q.; Tong, X. J.; Li, D. H., Active-set projected trust region algorithm for box constrained nonsmooth equations, J. Optim. Theory Appl., 120, 3, 601-625 (2004) · Zbl 1140.65331
[10] Ulbrich, M., Nonmonotone trust-region method for bound-constrained semismooth equations with applications to nonlinear complementarity problems, SIAM J. Optim., 11, 4, 889-917 (2001) · Zbl 1010.90085
[11] Kimiaei, M., A new class of nonmonotone adaptive trust-region methods for nonlinear equations with box constraints, Calcolo, 54, 3, 769-812 (2017) · Zbl 1373.90151
[12] Yu, Z.; Lin, J.; Sun, J.; Xiao, Y.; Liu, L.; Li, Z., Spectral gradient projection method for monotone nonlinear equations with convex constraints, Appl. Numer. Math., 59, 10, 2416-2423 (2009) · Zbl 1183.65056
[13] Liu, J.; Duan, Y. R., Two spectral gradient projection methods for constrained equations and their linear convergence rate, J. Inequal. Appl., 2015, 1, 1-13 (2015) · Zbl 1310.65066
[14] Yu, G.; Niu, S.; Ma, J., Multivariate spectral gradient projection method for nonlinear monotone equations with convex constraints, J. Ind. Manag. Optim., 9, 1, 117-129 (2013) · Zbl 1264.49037
[15] Liu, J.; Li, S., Multivariate spectral DY-type projection method for convex constrained nonlinear monotone equations, J. Ind. Manag. Optim., 13, 1, 283-295 (2017) · Zbl 1368.49038
[16] Zhang, L., A modified PRP projection method for nonlinear equations with convex constraints, Int. J. Pure Appl. Math., 79, 1, 87-96 (2012) · Zbl 1254.90174
[17] Xiao, Y. H.; Zhu, H., A conjugate gradient method to solve convex constrained monotone equations with applications in compressive sensing, J. Math. Anal. Appl., 405, 1, 310-319 (2013) · Zbl 1316.90050
[18] Wang, S.; Guan, H. B., A scaled conjugate gradient method for solving monotone nonlinear equations with convex constraints, J. Appl. Math., 2013, 1, 1-7 (2013) · Zbl 1397.90365
[19] Sun, M.; Liu, J., A globally convergent matrix-free method for constrained equations and its linear convergence rate, Abstr. Appl. Anal., 2014, 1-6 (2014) · Zbl 1470.65119
[20] Liu, S. Y.; Huang, Y. Y.; Jiao, H. W., Sufficient descent conjugate gradient methods for solving convex constrained nonlinear monotone equations, Abstr. Appl. Anal., 2014, 1, 1-12 (2014)
[21] Sun, M.; Liu, J., A modified Hestenes-Stiefel projection method for constrained nonlinear equations and its linear convergence rate, J. Appl. Math. Comput., 49, 1-2, 145-156 (2015) · Zbl 1336.65090
[22] Ding, Y. Y.; Xiao, Y. H.; Li, J. W., A class of conjugate gradient methods for convex constrained monotone equations, Optimization, 66, 12, 2309-2328 (2017) · Zbl 1383.90037
[23] Jian, J. B.; Han, L.; Jiang, X. Z., A hybrid conjugate gradient method with descent property for unconstrained optimization, Appl. Math. Model., 39, 3-4, 1281-1290 (2015) · Zbl 1432.90145
[24] Sun, M.; Liu, J., New hybrid conjugate gradient projection method for the convex constrained equations, Calcolo, 53, 3, 399-411 (2016) · Zbl 1357.65078
[25] La Cruz, W.; Raydan, M., Nonmonotone spectral methods for large-scale nonlinear systems, Optim. Methods Softw., 18, 5, 583-599 (2003) · Zbl 1069.65056
[26] La Cruz, W.; Martínez, J. M.; Raydan, M., Spectral residual method without gradient information for solving large-scale nonlinear systems of equations, Math. Comp., 75, 255, 1429-1448 (2006) · Zbl 1122.65049
[27] Solodov, M. V.; Svaiter, B. F., A globally convergent inexact Newton method for systems of monotone equations, (Fukushima, M.; Qi, L., Reformulation: Piecewise Smooth, Semismooth and Smoothing Methods. Reformulation: Piecewise Smooth, Semismooth and Smoothing Methods, Applied Optimization, vol. 22 (1998), Springer: Springer Boston MA), 355-369 · Zbl 0928.65059
[28] Fletcher, R.; Reeves, C. M., Function minimization by conjugate gradients, Comput. J., 7, 2, 149-154 (1964) · Zbl 0132.11701
[29] Polak, E.; Ribière, G., Note on the convergence of methods of conjugate directions (in French: Note sur la convergence de méthodes de directions conjuguées), Rev. Fr. Inform. Rech. Oper., 3, 35-43 (1969) · Zbl 0174.48001
[30] Polyak, B. T., The conjugate gradient method in extreme problems, USSR Comput. Math. Math. Phys., 9, 4, 94-112 (1969) · Zbl 0229.49023
[31] Hestenes, M. R.; Stiefel, E., Methods of conjugate gradients for solving linear systems, J. Res. Natl. Bur. Stand., 49, 409-436 (1952) · Zbl 0048.09901
[32] Dai, Y. H.; Yuan, Y. X., A nonlinear conjugate gradient method with a strong global convergence property, SIAM J. Optim., 10, 1, 177-182 (1999) · Zbl 0957.65061
[33] Zarantonello, E. H., Projections on Convex Sets in Hilbert Space and Spectral Theory (1971), Academic Press: Academic Press New York · Zbl 0281.47043
[34] Bonnans, J. F.; Gilbert, J. C.; Lemaréchal, C.; Sagastizábal, C. A., Numerical Optimization: Theoretical and Practical Aspects (2006), Springer Science & Business Media · Zbl 1108.65060
[35] Gao, P.; He, C., An efficient three-term conjugate gradient method for nonlinear monotone equations with convex constraints, Calcolo, 55, 4, 53 (2018) · Zbl 1405.65043
[36] Zhou, W. J.; Li, D. H., Limited memory BFGS method for nonlinear monotone equations, J. Comput. Math., 25, 1, 89-96 (2007)
[37] Dolan, E. D.; Moré, J. J., Benchmarking optimization software with performance profiles, Math. Program., 91, 2, 201-213 (2002) · Zbl 1049.90004
[38] Figueiredo, M. A.T.; Nowak, R. D.; Wright, S. J., Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems, IEEE J. Sel. Top. Signal Process., 1, 4, 586-597 (2007)
[39] Pang, J. S., Inexact Newton methods for the nonlinear complementarity problem, Math. Program., 36, 1, 54-71 (1986) · Zbl 0613.90097
[40] Xiao, Y. H.; Wang, Q. Y.; Hu, Q. J., Non-smooth equations based method for \(\ell_1\)-norm problems with applications to compressed sensing, Nonlinear Anal., 74, 11, 3570-3577 (2011) · Zbl 1217.65069
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.