×

Hamilton-Jacobi equations with singular boundary conditions on a free boundary and applications to differential games. (English) Zbl 0732.35013

The study of the Hamilton-Jacobi equations by the form \(H(x,DU)=0\) is the object of the paper. The operator H(x,DU) is defined as \[ H(x,p):=\min_{b\in B}\max_{a\in A}\{-f(x,a,b)p-h(x,a,b)\}\text{ for all } x,p\in {\mathbb{R}}^ N, \] with A,B compact, f,h sufficiently smooth, and h satisfying the condition \(h(x,a,b)\geq h_ 0>0\) for all \(x\in {\mathbb{R}}^ N\), \(a\in A\), \(b\in B\), appearing in generalized time-optimal control problems and differential games. Two types of particular problems are considered: \[ (a)\quad H(x,DU)=0\text{ in } \Omega \setminus {\mathcal T},\quad U=g\text{ on } \partial {\mathcal T},\quad U(x)\to +\infty \quad as\quad x\to x_ 0\in \partial \Omega, \] where \({\mathcal T}\) and g are given, \({\mathcal T}\subset {\mathbb{R}}^ N\) is closed; (b) \(H(x,DU)=0\) in \({\mathcal Q}\setminus {\mathcal T}\), \(U=g\) on \(\partial {\mathcal T}\) for some open set \({\mathcal Q}\) having nonempty intersection with the closed set \({\mathcal T}.\)
In the first type of problems, the authors show that there exists at most one pair (U,\(\Omega\)) such that U is continuous in \(\Omega \setminus {\mathcal T}\) up to \(\partial {\mathcal T}\), \(\Omega \subset {\mathcal T}\) is open and the boundary value problem is satisfied in the viscosity sense. For the second type of problems they study the local unicity of the solutions and their continuity, also in the viscosity sense. A local uniqueness theorem is also given, as well as some existence results and several applications to control and game theory. In particular a relaxation theorem (weak form of the bang-bang principle) is proved for a class of nonlinear differential games.

MSC:

35F20 Nonlinear first-order PDEs
49J20 Existence theories for optimal control problems involving partial differential equations
91A23 Differential games (aspects of game theory)
49L25 Viscosity solutions to Hamilton-Jacobi equations in optimal control and differential games
Full Text: DOI

References:

[1] A. Bacciotti, Sulla continuità della funzione tempo minimo, Boll. Un. Mat. Ital. B 15 (1978), 859-868. · Zbl 0398.40006
[2] Andrea Bacciotti, Linear systems with piecewise constant controls, Boll. Un. Mat. Ital. A (5) 18 (1981), no. 1, 102 – 105 (English, with Italian summary). · Zbl 0459.49030
[3] -, Fondamenti geometrici della teoria della controllabilità, Quad. Unione Mat. Italiana, vol. 31, Pitagora, Bologna, 1985.
[4] Martino Bardi, A boundary value problem for the minimum-time function, SIAM J. Control Optim. 27 (1989), no. 4, 776 – 785. · Zbl 0682.49034 · doi:10.1137/0327041
[5] M. Bardi and M. Falcone, An approximation scheme for the minimum time function, SIAM J. Control Optim. 28 (1990), no. 4, 950 – 965. · Zbl 0723.49024 · doi:10.1137/0328053
[6] -, (in preparation).
[7] Martino Bardi and Pierpaolo Soravia, A PDE framework for games of pursuit-evasion type, Differential games and applications (Sophia-Antipolis, 1988) Lect. Notes Control Inf. Sci., vol. 119, Springer, Berlin, 1989, pp. 62 – 71. · Zbl 0679.90109 · doi:10.1007/BFb0004263
[8] G. Barles and B. Perthame, Discontinuous solutions of deterministic optimal stopping time problems, RAIRO Modél. Math. Anal. Numér. 21 (1987), no. 4, 557 – 579 (English, with French summary). · Zbl 0629.49017
[9] E. N. Barron, L. C. Evans, and R. Jensen, Viscosity solutions of Isaacs’ equations and differential games with Lipschitz controls, J. Differential Equations 53 (1984), no. 2, 213 – 233. · Zbl 0548.90104 · doi:10.1016/0022-0396(84)90040-8
[10] Tamer Başar and Geert Jan Olsder, Dynamic noncooperative game theory, Mathematics in Science and Engineering, vol. 160, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1982. · Zbl 0479.90085
[11] Leonard D. Berkovitz, Differential games of generalized pursuit and evasion, SIAM J. Control Optim. 24 (1986), no. 3, 361 – 373. · Zbl 0593.90101 · doi:10.1137/0324021
[12] Leonard D. Berkovitz, Characterizations of the values of differential games, Appl. Math. Optim. 17 (1988), no. 2, 177 – 183. · Zbl 0647.90108 · doi:10.1007/BF01448365
[13] Alberto Bressan, On the minimal time function in nonlinear systems, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 66 (1979), no. 5, 383 – 388 (Italian, with English summary).
[14] Piermarco Cannarsa and Halil Mete Soner, On the singularities of the viscosity solutions to Hamilton-Jacobi-Bellman equations, Indiana Univ. Math. J. 36 (1987), no. 3, 501 – 524. · Zbl 0612.70016 · doi:10.1512/iumj.1987.36.36028
[15] I. Capuzzo-Dolcetta and H. Ishii, Approximate solutions of the Bellman equation of deterministic control theory, Appl. Math. Optim. 11 (1984), no. 2, 161 – 181. · Zbl 0553.49024 · doi:10.1007/BF01442176
[16] C. Caratheodory, Calculus of variations and partial differential equations of the first order, 2nd english ed., Chelsea, New York, 1982.
[17] M. G. Crandall, L. C. Evans, and P.-L. Lions, Some properties of viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc. 282 (1984), no. 2, 487 – 502. · Zbl 0543.35011
[18] Michael G. Crandall, Hitoshi Ishii, and Pierre-Louis Lions, Uniqueness of viscosity solutions of Hamilton-Jacobi equations revisited, J. Math. Soc. Japan 39 (1987), no. 4, 581 – 596. · Zbl 0644.35016 · doi:10.2969/jmsj/03940581
[19] Michael G. Crandall and Pierre-Louis Lions, Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc. 277 (1983), no. 1, 1 – 42. · Zbl 0599.35024
[20] Robert J. Elliott and Nigel J. Kalton, The existence of value in differential games, American Mathematical Society, Providence, R.I., 1972. Memoirs of the American Mathematical Society, No. 126. · Zbl 0244.90046
[21] L. C. Evans and H. Ishii, Differential games and nonlinear first order PDE on bounded domains, Manuscripta Math. 49 (1984), no. 2, 109 – 139. · Zbl 0559.35013 · doi:10.1007/BF01168747
[22] L. C. Evans and M. R. James, The Hamilton-Jacobi-Bellman equation for time-optimal control, SIAM J. Control Optim. 27 (1989), no. 6, 1477 – 1489. · Zbl 0688.49029 · doi:10.1137/0327076
[23] L. C. Evans and P. E. Souganidis, Differential games and representation formulas for solutions of Hamilton-Jacobi-Isaacs equations, Indiana Univ. Math. J. 33 (1984), no. 5, 773 – 797. · Zbl 1169.91317 · doi:10.1512/iumj.1984.33.33040
[24] Wendell H. Fleming, The convergence problem for differential games, J. Math. Anal. Appl. 3 (1961), 102 – 116. · Zbl 0113.14705 · doi:10.1016/0022-247X(61)90009-9
[25] Avner Friedman, Differential games, Wiley-Interscience [A division of John Wiley & Sons, Inc.], New York-London, 1971. Pure and Applied Mathematics, Vol. XXV. · Zbl 0229.90060
[26] Enrico Giusti, On the equation of surfaces of prescribed mean curvature. Existence and uniqueness without boundary conditions, Invent. Math. 46 (1978), no. 2, 111 – 137. · Zbl 0381.35035 · doi:10.1007/BF01393250
[27] Otomar Hájek, Pursuit games, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1975. An introduction to the theory and applications of differential games of pursuit and evasion; Mathematics in Science and Engineering, Vol. 120. · Zbl 0361.90084
[28] H. Hermes, Feedback synthesis and positive, local solutions to Hamilton-Jacobi-Bellman equations, Analysis and Control of Nonlinear Systems , North-Holland, Amsterdam, 1988, pp. 155-164.
[29] Henry Hermes and Joseph P. LaSalle, Functional analysis and time optimal control, Academic Press, New York-London, 1969. Mathematics in Science and Engineering, Vol. 56. · Zbl 0203.47504
[30] Rufus Isaacs, Differential games. A mathematical theory with applications to warfare and pursuit, control and optimization, John Wiley & Sons, Inc., New York-London-Sydney, 1965. · Zbl 0125.38001
[31] Hitoshi Ishii, Uniqueness of unbounded viscosity solution of Hamilton-Jacobi equations, Indiana Univ. Math. J. 33 (1984), no. 5, 721 – 748. · Zbl 0551.49016 · doi:10.1512/iumj.1984.33.33038
[32] Hitoshi Ishii, Perron’s method for Hamilton-Jacobi equations, Duke Math. J. 55 (1987), no. 2, 369 – 384. · Zbl 0697.35030 · doi:10.1215/S0012-7094-87-05521-9
[33] Hitoshi Ishii, Representation of solutions of Hamilton-Jacobi equations, Nonlinear Anal. 12 (1988), no. 2, 121 – 146. · Zbl 0687.35025 · doi:10.1016/0362-546X(88)90030-2
[34] Hitoshi Ishii, A boundary value problem of the Dirichlet type for Hamilton-Jacobi equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 16 (1989), no. 1, 105 – 135. · Zbl 0701.35052
[35] N. Krassovski and A. Soubbotine, Jeux différentiels, Éditions Mir, Moscow, 1977 (French). Traduit du russe par Djilali Embarek.
[36] S. N. Kruzkov, Generalized solutions of the Hamilton-Jacobi equations of the eikonal type. I, Math. USSR-Sb. 27 (1975), 406-445. · Zbl 0369.35012
[37] J. P. LaSalle, The time optimal control problem, Contributions to the theory of nonlinear oscillations, Vol. V, Princeton Univ. Press, Princeton, N.J., 1960, pp. 1 – 24. · Zbl 0095.29503
[38] Pierre-Louis Lions, Generalized solutions of Hamilton-Jacobi equations, Research Notes in Mathematics, vol. 69, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1982. · Zbl 0497.35001
[39] P.-L. Lions and P. E. Souganidis, Differential games, optimal control and directional derivatives of viscosity solutions of Bellman’s and Isaacs’ equations, SIAM J. Control Optim. 23 (1985), no. 4, 566 – 583. · Zbl 0569.49019 · doi:10.1137/0323036
[40] Paola Loreti, Some properties of constrained viscosity solutions of Hamilton-Jacobi-Bellman equations, SIAM J. Control Optim. 25 (1987), no. 5, 1244 – 1252. · Zbl 0679.49036 · doi:10.1137/0325068
[41] N. N. Petrov, Controllability of autonomous systems, Differencial’nye Uravnenija 4 (1968), 606 – 617 (Russian). · Zbl 0174.40302
[42] H. M. Soner, Optimal control problems with state-space constraints, I & II, SIAM J. Control 24 (1987), 551-561 and 1110-1122.
[43] Panagiotis E. Souganidis, Max-min representations and product formulas for the viscosity solutions of Hamilton-Jacobi equations with applications to differential games, Nonlinear Anal. 9 (1985), no. 3, 217 – 257. · Zbl 0526.35018 · doi:10.1016/0362-546X(85)90062-8
[44] N. N. Subbotina, A. I. Subbotin, and V. E. Tret\(^{\prime}\)jakov, Stochastic and deterministic control. Differential inequalities, Problems Control Inform. Theory/Problemy Upravlen. Teor. Inform. 14 (1985), no. 6, 405 – 419, P1 – P15 (English, with Russian summary). With the Russian original. · Zbl 0605.90147
[45] A. I. Subbotin and A. M. Tarasyev, Stability properties of the value function of a differential game and viscosity solutions of Hamilton-Jacobi equations, Problems Control Inform. Theory/Problemy Upravlen. Teor. Inform. 15 (1986), no. 6, 451 – 463, P1 – P13 (English, with Russian summary). With the Russian original. · Zbl 0631.90106
[46] H. J. Sussmann, A general theorem on local controllability, SIAM J. Control Optim. 25 (1987), no. 1, 158 – 194. · Zbl 0629.93012 · doi:10.1137/0325011
[47] Alberto Bressan, On a bang-bang principle for nonlinear systems, Boll. Un. Mat. Ital. Suppl. 1 (1980), 53 – 59 (English, with Italian summary). · Zbl 0445.49012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.