×

Le papillon de Hofstadter, revisité. (Hofstadter’s butterfly, revised). (French) Zbl 0732.44004

The spectrum of the Harper operator \(\cos (hD)+\cos (x)\) is studied in dependence of h. Qualitative properties of this “Hofstadter butterfly” are derived from the conjecture that spectral gaps only close for rational values of h.
Reviewer: J.Asch (Berlin)

MSC:

44A45 Classical operational calculus
35Q40 PDEs in connection with quantum mechanics
35S99 Pseudodifferential operators and other generalizations of partial differential operators
35P99 Spectral theory and eigenvalue problems for partial differential equations
81Q20 Semiclassical techniques, including WKB and Maslov methods applied to problems in quantum theory
PDF BibTeX XML Cite
Full Text: Numdam EuDML

References:

[1] S. Aubry : The new concept of transition by breaking of analyticity Solid State Sci.8 ( 1978 ), 264 MR 80d:82034
[2] J. Avron - R. Seiler : Quantization of the Hall conductance for general multiparticle Schrödinger Hamiltonians. Phys. Rev. Letters Vol. 54, n^\circ 4, Janvier 1985 , p. 259-262 MR 86f:81175
[3] J. Avron - B. Simon : J. Avron - B. Simon [1] Almost periodic Schrödinger operators , I. Limit Periodic potentials Comm. in Math. Physics. 82 p. 101-120 ( 1981 ) Article | Zbl 0484.35069 · Zbl 0484.35069
[4] J. Avron - B. Simon [2] Almost periodic Schrödinger operators , II The density of states Duke Math. Journal 50 ( 1983 ), 369-391 Article | MR 85i:34009a | Zbl 0544.35030 · Zbl 0544.35030
[5] J. Avron - B. Simon [3] Stability of gaps for periodic potentials under variation of a magnetic field J. Phys. A ; Math. Gen. 18 ( 1985 ) p 2199-2205 MR 87e:81039 | Zbl 0586.35084 · Zbl 0586.35084
[6] Ya Azbel : Energy spectrum of a conduction electron in a magnetic field Soviet Physics JETP vol. 19, n^\circ 3 Sept. 1964 [Be] J. Bellissard : J. Bellissard [1] Almost periodicity in solid state Physics and C*-algebras ”The Harald Bohr Centennary” Proceedings of the symposium held in Copenhaguen conference on almost periodic functions April : 24-25 1987 ; C. Berg, B. Fuglede Ed. The Royal Academy of Sciences, Editions, Copenhaguen 1989 J. Bellissard [2] C*-Algebras in solid State Physics-2D Electrons in a uniform magnetic field ; ”operator algebras and applications” D.E. Evans and M. Takesaki Eds Cambridge University Press, Vol. 2 ( 1988 ) pp 49-76 MR 91c:46094 | Zbl 0677.46055 · Zbl 0677.46055
[7] J. Bellissard - R. Lima - D. Testard : A metal-insulator transition for the almost Mathieu model Comm. in Math. Phys. 88, 207-234 ( 1983 ) Article | MR 85i:82055 | Zbl 0542.35059 · Zbl 0542.35059
[8] J. Bellissard - B. Simon : Cantor Spectrum for the Almost Mathieu Equation Journal of functional Analysis, vol. 48, N^\circ 3, Oct 1982 MR 84h:81019 | Zbl 0516.47018 · Zbl 0516.47018
[9] Benderskii - L. Pasteur : On the spectrum of the one-dimensional Schrödinger equation with a random potential . Math. USSR Sb. 11, 245 ( 1970 ) Zbl 0216.37301 · Zbl 0216.37301
[10] R.G. Chambers : The wave function of a Bloch electron in a Magnetic field Proc. Phys. Soc. 89 ( 1966 ), 695-710 [C - E - Y] Man Duen Choi , Georges A. Elliott , Noriko Yui : Gauss polynomials and the rotation algebra Preprint Septembre 1988 , et Inventiones matematicae Vol 99 Fasc. 2 1990 Zbl 0665.46051 · Zbl 0665.46051
[11] F. H. Claro , W. H. Wannier : Magnetic subband structure of electrons in hexagonal lattices Phys. Rev. B19 ( 1979 ), 6068-74 [C - F - K - S] H. L. Cycon - R. G. Froese - W. Kirsch - B. Simon : Schrödinger operators with applications to quantum mechanics and global geometry Texts and monographs in Physics, Springer Verlag Zbl 0619.47005 · Zbl 0619.47005
[12] G.A. Elliott : Gaps in the spectrum of an almost periodic Schrödinger operator C.R. Math. Rep. Acad. Sci. Canada 4 ( 1982 ) p. 255-259 MR 85b:47054 | Zbl 0516.46048 · Zbl 0516.46048
[13] J.P. Guillement - B. Helffer - P. Treton : Walk inside Hofstadter’s butterfly Journal de Physique France 50 ( 1989 ) 2019-2058 [He - Ro] B. Helffer - D. Robert : Calcul fonctionnel par la transformée de Mellin et opérateurs admissibles Journal of Functional Analysis 53 ( 1983 ) p. 246-268 MR 85i:47052 | Zbl 0524.35103 · Zbl 0524.35103
[14] B. Helffer , J. Sjostrand : B. Helffer , J. Sjostrand [1] Analyse semi-classique pour l’équation de Harper (avec application à l’étude de l’équation de Schrödinger avec champ magnétique) ; Mémoires de la SMF 1988 Numdam | Zbl 0714.34130 · Zbl 0714.34130
[15] B. Helffer , J. Sjostrand [2] Analyse semi-classique pour l’équation de Harper II preprint nov. 1988 ; à paraître aux mémoires de la SMF 1989 Numdam | Zbl 0714.34131 · Zbl 0714.34131
[16] B. Helffer , J. Sjostrand [3] Semi-classical analysis for Harper’s equation III preprint Orsay (avril 1988 ), à paraître aux mémoires de la SMF 1989 et annoncé au Séminaire EDP de l’école Polytechnique 87-88 Numdam | Zbl 0725.34099 · Zbl 0725.34099
[17] B. Helffer , J. Sjostrand [4] Equation de Schrödinger avec champ magnétique et équation de Harper ; Preprint Dec. 1988 et paru dans ”Schrödinger operators”, Proceedings, Sønderborg, Denmark, 1988 ; Lecture Notes in Physics n^\circ 345, Springer Verlag Zbl 0699.35189 · Zbl 0699.35189
[18] B. Helffer , J. Sjostrand [5] On Diamagnetism and de Haas-Van Alphen effect Preprint Paris-sud, mai 1989 ; à paraître aux annales de l’IHP (section Physique théorique) Numdam | Zbl 0715.35070 · Zbl 0715.35070
[19] D. Hofstadter : Energy Levels and Wave functions of Bloch electrons in rational and irrational magnetic fields Phys. Rev. B 14 ( 1976 ), 2239-2249 [J - M] R. Johnson - J. Moser : The rotation number for almost periodic potentials Comm. in Math. Phys. 84, ( 1982 ), 403-438 ; 90, ( 1983 ), 317-318 Article | MR 83h:34018 | Zbl 0497.35026 · Zbl 0497.35026
[20] A. Ya Khinchin : Continued fractions Phoenix Science Series ( 1964 ) [Mo] P. (Van) Mouche : P. (Van) Mouche [1] Clustering and Nesting of Energy spectra Proceedings ICIAM 87, Paris la Villette, June 29-July 3 1987 MR 89k:81050
[21] P. (Van) Mouche [2] The coexistence problem for the discrete Mathieu operator Preprint Février 88 et Comm. in Math. Physics Vol 122 n^\circ 1, 1989 , p. 23-34 Article | MR 90e:47027 | Zbl 0669.34016 · Zbl 0669.34016
[22] M. Pimsner , D. Voiculescu : Imbedding the irrational rotation C*-algebra into an AF-algebra Journal Operator theory 4, 1980 p. 211-218 MR 82d:46086 | Zbl 0525.46031 · Zbl 0525.46031
[23] M.A. Shubin : The spectral theory and the index of elliptic operators with almost periodic coefficients Russian Math. Surveys, 34, ( 1979 ), 109-157 MR 81f:35090 | Zbl 0448.47032 · Zbl 0448.47032
[24] B. Simon : Almost periodic Schrödinger operators . A review Advances in applied Mathematics 3 p. 463-490 ( 1982 ) MR 85d:34030 | Zbl 0545.34023 · Zbl 0545.34023
[25] D. Thouless , M. Kohmoto , M. Nightingale , M. de Nijs : Quantized Hall conductance in two dimensional periodic potential . Phys. Rev. Letters, 49, ( 1982 ), p. 405-408 [Wa] G.H. Wannier : Phys. Status Solidi B 88 , 757 ( 1978 ) [Wilk] M. Wilkinson : M. Wilkinson [1] Critical properties of electron eigenstates in incommensurate systems Proc. Royal Society of London A391 p 305-350 ( 1984 ) MR 86b:81136
[26] M. Wilkinson [2] Von Neumann lattices of Wannier functions for Bloch electrons in a magnetic field Proc. R. Soc. Lond. A 403, p 135-166 ( 1986 ) MR 87f:81178
[27] M. Wilkinson [3] An exact effective hamiltonian for a perturbed Landau Level Journal of Physics A, Vol. 20, n^\circ 7, 11 May 1987 , p. 1761 MR 88g:81157 | Zbl 0639.47010 · Zbl 0639.47010
[28] M. Wilkinson [4] An exact renormalization group for Bloch electrons in a magnetic fields . Journal of Physics A, Vol. 20, p. 4337-4354 MR 88j:81087
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.