A triangular mixed finite element method for the stationary semiconductor device equations. (English) Zbl 0732.65114

The authors present a triangular finite element method for the stationary semiconductor device equations. This method can be regarded as an extension to two dimensions of the one-dimensional Scharfetter-Gummel technique. Existence, uniqueness and stability of the approximate solution are proved for an arbitrary triangular mesh and some additional corresponding mathematical details are discussed.


65Z05 Applications to the sciences
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
78A55 Technical applications of optics and electromagnetic theory
35Q60 PDEs in connection with optics and electromagnetic theory
Full Text: DOI EuDML


[1] R. A. ADAMS, Sobolev Spaces, Academie Press, New York (1975). Zbl0314.46030 MR450957 · Zbl 0314.46030
[2] I. BABUŠKA, A. K. AZIZ, Survey Lectures on the Mathematical Foundations of the Finite Element Method from The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, Academic Press, New York (1972). Zbl0268.65052 MR421106 · Zbl 0268.65052
[3] I. BABUŠKA, J. E. OSBORN, Generalized Finite Element Methods: Their Performance and Their Relation to Mixed Methods, SIAM J. Numer. Anal., 20, No. 3 (1983) 510-536. Zbl0528.65046 MR701094 · Zbl 0528.65046
[4] R. E. BANK, D. J. ROSE, Some Error Estimates fot the Box Method, SIAM J. Numer. Anal., 24, No. 4 (1987) 777-787. Zbl0634.65105 MR899703 · Zbl 0634.65105
[5] F. BREZZI, P. MARINI, P. PIETRA, Méthodes d’éléments finis et schema de Scharfetter-Gummel, C. R. Acad. Sci. Paris, 305, Seriel (1987) 599-604. Zbl0623.65131 MR917577 · Zbl 0623.65131
[6] F. BREZZI, P. MARINI, P. PIETRA, Two-Dimensional Exponential Fitting and Applications to Semiconductor Device Equations, SIAM J. Numer. Anal. 26 (1989) 1342-1355. Zbl0686.65088 MR1025092 · Zbl 0686.65088
[7] F. BREZZI, L. D. MARINI, P. PIETRANumerical Solution of Semiconductor Devices, Comp. Meth. Appl. Mech. Engin, 75 (1989) 493-514. Zbl0698.76125 MR1035759 · Zbl 0698.76125
[8] E. BUTURLA, P. COTTRELL, B. M. GROSSMAN, K. A. SALSBURG, Finite-Element Analysis of Semiconductor Devices The FIELDAY Program, IBM J. Res. Develop., 25, No. 4 (1981) 218-231.
[9] P. G. CIARLET, P. A. RAVIART, General Lagrange and Hermite Interpolation in Rn with Applications to Finite Element Methods, Arch. Rat. Mech. Anal., 46 (1972) 177-199. Zbl0243.41004 MR336957 · Zbl 0243.41004
[10] B. DELAUNAY, Sur la sphere vide, Izv. Akad. Nauk. SSSR, Math and Nat. Sci. Div., No. 6 (1934) 793-800 Zbl0010.41101 · Zbl 0010.41101
[11] [11] G. L. DIRICHLET, Uber die Reduction der positiven quadratischen Formen mit drei unbestimmten ganzen Zahlen, J. Reine Angew. Math., 40, No. 3 (1850) 209-227. Zbl040.1103cj · ERAM 040.1103cj
[12] V. GIRAULT, P. A. RAVIART, Finite Element Approximation of the Navier-Stokes Equations, Lect. Notes in Math., No. 749, Springer-Verlag (1979). Zbl0413.65081 MR548867 · Zbl 0413.65081
[13] H. K. GUMMEL, A Self-Consistent Iterative Scheme for One-Dimensional Steady State Transistor Calculation, IEEE Trans. Elec. Dev., ED-11 (1964) 455-465.
[14] B. HEINRICH, Finite difference methods on irregular networks, Birkhauser Verlag, Basel-Boston-Stuttgart (1987). Zbl0623.65096 MR875416 · Zbl 0623.65096
[15] T IKEDA, Maximum Principle in Finite Element Models for Convection-Diffusion Phenomena, North-Holland (1983) Zbl0508.65049 · Zbl 0508.65049
[16] R. H. LI, Generalized Difference Methods for a Nonlinear Dirichlet Problem, SIAM J. Numer. Anal. Vol. 24, No. 1 (1987) 77-88 Zbl0626.65091 MR874736 · Zbl 0626.65091
[17] R. H. MACNEAL, An Asymmetrical Finite Difference Network, Quart. Appl. Math., 11 (1953) 295-310. Zbl0053.26304 MR57631 · Zbl 0053.26304
[18] P. A. MARKOWICH, M. ZLÁMAL, Inverse-Average-Type Finite Element Discretisations of Self adjoint Second-Order Elliptic Problems, Math. Comput., 51, No. 184 (1988) 431-449. Zbl0699.65074 MR930223 · Zbl 0699.65074
[19] B. J. MCCARTIN, Discretization of the Semiconductor Device Equations from New Problems and New Solutions for Device and Process Modelling, ed. J. J. H. Miller, Boole Press, Dublin (1985).
[20] J. J. H. MILLER, S. WANG, C. H. WU, A Mixed Finite Element Method for the Stationary Semiconductor Continuity Equations, Engin. Comput., 5, No. 4 (1988) 285-288. MR1171713 · Zbl 0675.65127
[21] M. S. MOCK, Analysis of a Discretization Algorithm for Stationary Continuity Equations in Semiconductor Device Models, COMPEL, Vol. 2, No. 4 (1983) 117-139. Zbl0619.65116 · Zbl 0619.65116
[22] J. T. ODEN, J. K. LEE, Theory of Mixed and Hybrid Finite-Element Approximations in Linear Elasticity from IUTAM/IUM Symp. Applications of Methods of Functional Analysis to Problems of Mechanics, Lect. Notes in Math. No. 503, Springer-Verlag (1976). Zbl0361.73031 MR670098 · Zbl 0361.73031
[23] J. T. ODEN, J. N. REDDY, An Introduction to the Mathematical Theory of Finite Elements, John Wiley & Sons, New York (1976). Zbl0336.35001 MR461950 · Zbl 0336.35001
[24] W. V. VAN ROOSBROECK, Theory of Flow of Electrons and Holes in Germanium and Other Semiconductors, Bell Syst. Tech. J., 29 (1950) 560-607 · Zbl 1372.35295
[25] R. S. VARGA, Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, New Jersey (1962). Zbl0133.08602 MR158502 · Zbl 0133.08602
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.