×

zbMATH — the first resource for mathematics

Probabilistic reanalysis of storm surge extremes in Europe. (English) Zbl 1456.86002
Summary: Extreme sea levels are a significant threat to life, property, and the environment. These threats are managed by coastal planers through the implementation of risk mitigation strategies. Central to such strategies is knowledge of extreme event probabilities. Typically, these probabilities are estimated by fitting a suitable distribution to the observed extreme data. Estimates, however, are often uncertain due to the small number of extreme events in the tide gauge record and are only available at gauged locations. This restricts our ability to implement cost-effective mitigation. A remarkable fact about sea-level extremes is the existence of spatial dependences, yet the vast majority of studies to date have analyzed extremes on a site-by-site basis. Here we demonstrate that spatial dependences can be exploited to address the limitations posed by the spatiotemporal sparseness of the observational record. We achieve this by pooling all of the tide gauge data together through a Bayesian hierarchical model that describes how the distribution of surge extremes varies in time and space. Our approach has two highly desirable advantages: 1) it enables sharing of information across data sites, with a consequent drastic reduction in estimation uncertainty; 2) it permits interpolation of both the extreme values and the extreme distribution parameters at any arbitrary ungauged location. Using our model, we produce an observation-based probabilistic reanalysis of surge extremes covering the entire Atlantic and North Sea coasts of Europe for the period 1960-2013.
MSC:
86A05 Hydrology, hydrography, oceanography
86A08 Climate science and climate modeling
62F15 Bayesian inference
62G32 Statistics of extreme values; tail inference
Software:
Stan
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] J. Hinkel et al ., Coastal flood damage and adaptation costs under 21st century sea-level rise. Proc. Natl. Acad. Sci. U.S.A. 111, 3292-3297 (2014).
[2] R. E. Kopp et al ., Probabilistic 21st and 22nd century sea‐level projections at a global network of tide‐gauge sites. Earth’s Future 2, 383-406 (2014).
[3] M. I. Vousdoukas et al ., Global probabilistic projections of extreme sea levels show intensification of coastal flood hazard. Nat. Commun. 9, 2360 (2018).
[4] E. M. Gnedenko, Sur la distribution limite du terme maximum d’une serie aleatoire. Ann. Math. 44, 423-453 (1943). · Zbl 0063.01643
[5] D. McFadden, Modeling the choice of residential location. Transp. Res. Rec. 672, 72-77 (1978).
[6] J. Pickands, Statistical inference using extreme order statistics. Ann. Stat. 3, 119-131 (1975). · Zbl 0312.62038
[7] T. F. Stocker et al J. A. Church et al ., “Sea level change” in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, T. F. Stocker et al., Eds. (Cambridge University Press, Cambridge, 2013), pp. 1137-1216.
[8] M. Menéndez, P. L. Woodworth, Changes in extreme high water levels based on a quasi‐global tide‐gauge data set. J. Geophys. Res. 115, C10011 (2010).
[9] M. Marcos, F. M. Calafat, A. Berihuete, S. Dangendorf, Long-term variations in global sea level extremes. J. Geophys. Res. Oceans 120, 8115-8134 (2015).
[10] T. Wahl, D. P. Chambers, Evidence for multidecadal variability in US extreme sea level records. J. Geophys. Res. Oceans 120, 1527-1544 (2015).
[11] M. Marcos, P. L. Woodworth, Spatiotemporal changes in extreme sea levels along the coasts of the North Atlantic and the Gulf of Mexico. J. Geophys. Res. Oceans 122, 7031-7048 (2017).
[12] D. Conte, P. Lionello, Characteristics of large positive and negative surges in the Mediterranean Sea and their attenuation in future climate scenarios. Global Planet. Change 111, 159-173 (2013).
[13] F. M. Calafat et al ., The ability of a barotropic model to simulate sea level extremes of meteorological origin in the Mediterranean Sea, including those caused by explosive cyclones. J. Geophys. Res. Oceans 119, 7840-7853 (2014).
[14] S. Muis, M. Verlaan, H. C. Winsemius, J. C. J. H. Aerts, P. J. Ward, A global reanalysis of storm surges and extreme sea levels. Nat. Commun. 7, 11969 (2016).
[15] M. I. Vousdoukas, E. Voukouvalas, A. Annunziato, A. Giardino, L. Feyen, Projections of extreme storm surge levels along Europe. Clim. Dyn. 47, 3171-3190 (2016).
[16] M. A. Merrifield, A. S. Genz, C. P. Kontoes, J. J. Marra, Annual maximum water levels from tide gauges: Contributing factors and geographic patterns. J. Geophys. Res. Oceans 118, 2535-2546 (2013).
[17] J. Rohmer, G. Le Cozannet, Dominance of the mean sea level in the high-percentile sea levels time evolution with respect to large-scale climate variability: A Bayesian statistical approach. Environ. Res. Lett. 14, 014008 (2019).
[18] M. N. Tsimplis, D. Blackman, Extreme sea‐level distribution and return periods in the Aegean and the Ionian Seas. Estuar. Coast. Shelf Sci. 44, 79-89 (1997).
[19] P. L. Woodworth, D. L. Blackman, Changes in high waters at Liverpool since 1768. Int. J. Climatol. 22, 697-714 (2002).
[20] S. Coles, J. Tawn, Bayesian modelling of extreme surges on the UK east coast. Philos. Trans. A Math. Phys. Eng. Sci. 363, 1387-1406 (2005).
[21] M. Marcos, M. N. Tsimplis, A. G. P. Shaw, Sea level extremes in southern Europe. J. Geophys. Res. 114, C01007 (2009).
[22] S. Dangendorf et al ., North Sea storminess from a novel storm surge record since AD 1843. J. Clim. 27, 3582-3595 (2014).
[23] X. Feng, M. N. Tsimplis, Sea level extremes at the coasts of China. J. Geophys. Res. Oceans 119, 1593-1608 (2014).
[24] I. D. Haigh et al ., Estimating present day extreme water level exceedance probabilities around the coastline of Australia: Tides, extra‐tropical storm surges and mean sea level. Clim. Dyn. 42, 121-138 (2014).
[25] S. A. Talke, P. Orton, D. A. Jay, Increasing storm tides in New York Harbor, 1844-2013. Geophys. Res. Lett. 41, 3149-3155 (2014).
[26] A. Cid, T. Wahl, D. P. Chambers, S. Muis, Storm surge reconstruction and return water level estimation in Southeast Asia for the 20th century. J. Geophys. Res. Oceans 123, 437-451 (2018).
[27] C. Tebaldi, B. H. Strauss, C. E. Zervas, Modelling sea level rise impacts on storm surges along US coasts. Environ. Res. Lett. 7, 014032 (2012).
[28] M. K. Buchanan, R. E. Kopp, M. Oppenheimer, C. Tebaldi, Allowances for evolving coastal flood risk under uncertain local sea-level rise. Clim. Change 137, 347-362 (2016).
[29] A. Gelman et al ., Bayesian Data Analysis (Chapman and Hall/CRC Press, Boca Raton, FL, ed. 3, 2014). · Zbl 1332.62426
[30] D. Cooley, D. Nychka, P. Naveau, Bayesian spatial modeling of extreme precipitation return levels. J. Am. Stat. Assoc. 102, 824-840 (2007). · Zbl 05564414
[31] A. C. Davison, S. A. Padoan, M. Ribatet, Statistical modeling of spatial extremes. Stat. Sci. 27, 161-186 (2012). · Zbl 1330.86021
[32] B. J. Reich, B. A. Shaby, A hierarchical max-stable spatial model for extreme precipitation. Ann. Appl. Stat. 6, 1430-1451 (2012). · Zbl 1257.62120
[33] B. A. Shaby, B. J. Reich, Bayesian spatial extreme value analysis to assess the changing risk of concurrent high temperatures across large portions of European cropland. Environmetrics 23, 638-648 (2012).
[34] A. G. Stephenson, E. A. Lehmann, A. Phatak, A max‐stable process model for rainfall extremes at different accumulation durations. Weather Clim. Extrem. 13, 44-53 (2016).
[35] J. Tawn, R. Shooter, R. Towe, R. Lamb, Modelling spatial extreme events with environmental applications. Spat. Stat. 28, 39-58 (2018).
[36] L. Bardet, C.-M. Duluc, V. Rebour, J. L’Her, Regional frequency analysis of extreme storm surges along the French coast. Nat. Hazards Earth Syst. Sci. 11, 1627-1639 (2011).
[37] P. Bernardara, M. Andreewsky, M. Benoit, Application of regional frequency analysis to the estimation of extreme storm surges. J. Geophys. Res. 116, C02008 (2011).
[38] J. Weiss, P. Bernardara, M. Benoit, Modeling intersite dependence for regional frequency analysis of extreme marine events. Water Resour. Res. 50, 5926-5940 (2014).
[39] M. Schlather, Models for stationary max-stable random fields. Extremes 5, 33-44 (2002). · Zbl 1035.60054
[40] F. M. Calafat, M. Marcos, Probabilistic reanalysis of storm surge extremes in Europe. Zenodo. https://doi.org/10.5281/zenodo.3471600. Deposited 3 October 2019.
[41] N. Cressie, C. Wikle, Statistics for Spatio-Temporal Data (John Wiley & Sons, New York, 2011). · Zbl 1273.62017
[42] C. E. Rasmussen, C. K. I. Williams, Gaussian Processes for Machine Learning (MIT Press, Cambridge, MA, 2006). · Zbl 1177.68165
[43] A. E. Gill, Atmosphere-Ocean Dynamics (Academic, San Diego, 1982).
[44] S. Dangendorf, A. Arns, J. G. Pinto, P. Ludwig, J. Jensen, The exceptional influence of storm “Xaver” on design water levels in the German Bight. Environ. Res. Lett. 11, 054001 (2016).
[45] P. L. Woodworth et al ., Towards a global higher-frequency sea level data set. Geosci. Data J. 3, 50-59 (2017).
[46] M. D. Hoffman, A. Gelman, The No-U-Turn sampler: Adaptively setting path lengths in Hamiltonian Monte Carlo. J. Mach. Learn. Res. 15, 1593-1623 (2014). · Zbl 1319.60150
[47] B. Carpenter et al ., Stan: A probabilistic programming language. J. Stat. Softw. 76, doi:10.18637/jss.v076.i01 (2017).
[48] A. T. Vafeidis et al ., A new global coastal database for impact and vulnerability analysis to sea-level rise. J. Coast. Res. 244, 917-924 (2008).
[49] D. P. Dee et al ., The ERA-interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137, 553-597 (2011).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.