×

Sliding-mode-based platooning: theory and applications. (English) Zbl 1461.93076

Steinberger, Martin (ed.) et al., Variable-structure systems and sliding-mode control. From theory to practice. Cham: Springer. Stud. Syst. Decis. Control 271, 393-431 (2020).
Summary: This chapter discusses sliding-mode-based approaches for longitudinal control of vehicles. In the platooning applications, several vehicles are aligned in a string for economic reasons, e.g., for the sake of saving fuel. Each vehicle has an immediate impact on the followers leading to dynamic phenomena along the string. The so-called string stable controllers based on sliding-mode controllers are the focus of this work. In addition, position error overshoots have been eliminated, and thus dynamic effects leading to collisions can be avoided. The controllers have been implemented on a testbed consisting of small-scale vehicles, and experimental results are shown.
For the entire collection see [Zbl 1459.93004].

MSC:

93B12 Variable structure systems

Software:

AprilCal; RT-MaG
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Automated driving lab, institute of automation and control. https://www.tugraz.at/en/institutes/irt/automated-driving-lab/videos/ (2018). Accessed 24 Jan 2018
[2] KTH Smart Mobility Lab. https://www.kth.se/en/ees/omskolan/organisation/avdelningar/ac/research/control-of-transport/smart-mobility-lab/smart-mobility-lab-1.441539 (2017). Accessed 19 Oct 2017
[3] Amodeo, M., Ferrara, A., Terzaghi, R., Vecchio, C.: Slip control for vehicles platooning via second order sliding modes. In: 2007 IEEE Intelligent Vehicles Symposium, pp. 761-766 (2007)
[4] Bartolini, G., Ferrara, A., Usai, E.: Output tracking control of uncertain nonlinear second-order systems. Automatica 33(12), 2203-2212 (1997) · Zbl 0906.93023
[5] Boiko, I.: Discontinuous Control Systems: Frequency-Domain Analysis and Design. Springer, Berlin (2008) · Zbl 1144.93020
[6] Boiko, I., Fridman, L., Pisano, A., Usai, E.: Analysis of chattering in systems with second-order sliding modes. IEEE Trans. Autom. Control 52(11), 2085-2102 (2007) · Zbl 1366.93378
[7] Boiko, I., Fridman, L., Pisano, A., Usai, E.: On the transfer properties of the “generalized sub-optimal” second-order sliding mode control algorithm. IEEE Trans. Autom. Control 54(2), 399-403 (2009) · Zbl 1367.93117
[8] Eigel, T.: Integrierte Längs-und Querführung von Personenkraftwagen mittels Sliding-Mode-Regelung. Ph.D. thesis, Technische Universität Braunschweig (2009)
[9] Eyre, J., Yanakiev, D., Kanellakopoulos, I.: String stability properties of AHS longitudinal vehicle controllers. In: Transportation Systems, pp. 71-76 (1997)
[10] Eyre, J., Yanakiev, D., Kanellakopoulos, I.: A simplified framework for string stability analysis of automated vehicles. Vehicle Syst. Dyn. 30(5), 375-405 (1998)
[11] Ferrara, A., Incremona, G.P.: Sliding modes control in vehicle longitudinal dynamics control. In: Advances in Variable Structure Systems and Sliding Mode Control - Theory and Applications, pp. 357-383. Springer (2018)
[12] Ferrara, A., Librino, R., Massola, A., Miglietta, M., Vecchio, C.: Sliding mode control for urban vehicles platooning. In: 2008 IEEE Intelligent Vehicles Symposium, pp. 877-882 (2008)
[13] Ferrara, A., Vecchio, C.: Controlling a platoon of vehicles via a second order sliding mode approach. IFAC Proc. 39(12), 439-444 (2006)
[14] Ferrara, A., Vecchio, C.: Second order sliding mode control of vehicles with distributed collision avoidance capabilities. Mechatronics 19(4), 471-477 (2009). Robotics and Factory of the Future, New Trends and Challenges in Mechatronics
[15] Guo, X., Wang, J., Liao, F., Teo, R.S.H.: CNN-based distributed adaptive control for vehicle-following platoon with input saturation. IEEE Trans. Intell. Transp. Syst. 19(10), 3121-3132 (2018)
[16] Guo, X., Wang, J., Liao, F., Teo, R.S.H.: Distributed adaptive integrated-sliding-mode controller synthesis for string stability of vehicle platoons. IEEE Trans. Intell. Transp. Syst. 17(9), 2419-2429 (2016)
[17] Khalil, H.K.: Nonlinear Systems. Prentice-Hall, Upper Saddle River (2002) · Zbl 1003.34002
[18] Klinge, S., Middleton, R.H.: Time headway requirements for string stability of homogeneous linear unidirectionally connected systems. In: Proceedings of the 48th IEEE Conference on Decision and Control, 2009 held jointly with the 2009 28th Chinese Control Conference. CDC/CCC 2009, pp. 1992-1997. IEEE (2009)
[19] Kwon, J., Chwa, D.: Adaptive bidirectional platoon control using a coupled sliding mode control method. IEEE Trans. Intell. Transp. Syst. 15(5), 2040-2048 (2014)
[20] Manecy, A., Marchand, N., Viollet, S.: RT-MaG: an open-source SIMULINK toolbox for linux-based real-time robotic applications. In: 2014 IEEE International Conference on Robotics and Biomimetics (ROBIO 2014). Institute of Electrical and Electronics Engineers (IEEE) (2014)
[21] Marzbani, H., Jazar, R., Fard, M.: Better road design using clothoids. In: Denbratt, I., Subic, A., Wellnitz, J. (eds.) Sustainable Automotive Technologies 2014. Lecture Notes in Mobility, Chapter 3, pp. 25-40. Springer, Berlin (2015)
[22] Olson, E.: AprilTag: a robust and flexible visual fiducial system. In: 2011 IEEE International Conference on Robotics and Automation. Institute of Electrical and Electronics Engineers (IEEE) (2011)
[23] Öncü, S., van de Wouw, N., Heemels, W.P. M.H., Nijmeijer, H.: String stability of interconnected vehicles under communication constraints. In: 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), pp. 2459-2464. IEEE (2012)
[24] Ploeg, J., Shukla, D.P., van de Wouw, N., Nijmeijer, H.: Controller synthesis for string stability of vehicle platoons. IEEE Trans. Intell. Transp. Syst. 15(2), 854-865 (2014)
[25] Richardson, A., Strom, J., Olson, E.: AprilCal: assisted and repeatable camera calibration. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. Institute of Electrical and Electronics Engineers (IEEE) (2013)
[26] Rupp, A.: Trajectory Planning and Formation Control for Automated Driving on Highways. Ph.D. thesis, Graz University of Technology (2018)
[27] Rupp, A., Reichhartinger, M., Horn, M.: String stability analysis for sliding mode controllers in platoons with unmodeled actuator dynamics: a frequency domain approach. In: 2019 European Control Conference (ECC) (2019)
[28] Rupp, A., Steinberger, M., Horn, M.: Sliding mode based platooning with non-zero initial spacing errors. IEEE Control Syst. Lett. 1(2), 274-279 (2017)
[29] Rupp, A., Tranninger, M., Wallner, M., Zubaca, J., Steinberger, M., Horn, M.: Fast and low-cost testing of advanced driver assistance systems using small-scale vehicles. In: Proceedings of the 9th IFAC Symposium on Advances in Automotive Control (AAC 2019) (2019)
[30] Rupp, A., Wallner, R., Koch, R., Reichhartinger, M., Horn, M.: Sliding mode based platooning with actuator dynamics. In: 2018 15th International Workshop on Variable Structure Systems (VSS) (2018)
[31] Seiler, P., Pant, A., Hedrick, K.: Disturbance propagation in vehicle strings. IEEE Trans. Autom. Control 49(10), 1835-1842 (2004) · Zbl 1365.93328
[32] Swaroop, D., Hedrick, J.K.: String stability of interconnected systems. IEEE Trans. Autom. Control 41(3), 349-357 (1996) · Zbl 0848.93054
[33] Utkin, V., Lee, H.: Chattering problem in sliding mode control systems. In: International Workshop on Variable Structure Systems, 2006. VSS’06., pp. 346-350 (2006)
[34] Watzenig, D., Horn, M. (eds.): Automated Driving 2016: Safer and More Efficient Future Driving. Springer, Berlin (2017)
[35] Yanakiev, D., Kanellakopoulos, I.: A simplified framework for string stability analysis in AHS. In: Proceedings of the 13th IFAC World Congress, vol. 182, pp. 177-182 (1996)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.