zbMATH — the first resource for mathematics

New testing approaches for mean-variance predictability. (English) Zbl 07327207
Summary: We propose parametric tests for serial correlation in levels and squares that exploit the non-normality of financial returns. Our tests are robust to distributional misspecification. Furthermore, our mean predictability tests can be robustified against time-varying volatility. Local power analyses confirm their gains over existing methods, while Monte Carlo exercises assess their finite sample reliability. We apply our tests to quarterly returns on the five Fama-French factors for international stocks, whose distributions are mostly symmetric but fat-tailed. Our results highlight noticeable differences across regions and factors and confirm the numerical sensitivity of the usual tests to influential observations.
62 Statistics
91 Game theory, economics, finance, and other social and behavioral sciences
nag; NAG; robustbase
Full Text: DOI
[1] Amengual, D.; Sentana, E., A comparison of mean-variance efficiency tests, J. Econometrics, 154, 16-34 (2010) · Zbl 1431.62075
[2] Amengual, D.; Sentana, E., Inference in multivariate dynamic models with elliptical innovations (2011), mimeo CEMFI
[3] Amengual, D.; Sentana, E., Is a normal copula the right copula?, J. Bus. Econom. Statist., 38, 350-366 (2020)
[4] Andrews, D. W.K., Testing when a parameter is on the boundary of the maintained hypothesis, Econometrica, 69, 683-734 (2001) · Zbl 0999.62010
[5] Arellano, M., Moment testing with non-ML estimators (1991), mimeo, CEMFI
[6] Bera, A.; Ng, P., Robust tests for heteroskedasticity and autocorrelation using score function, J. Indian Soc. Probab. Statist., 6, 78-96 (2002)
[7] Bollerslev, T., Generalized autoregressive conditional heteroskedasticity, J. Econometrics, 31, 307-327 (1986) · Zbl 0616.62119
[8] Bollerslev, T.; Wooldridge, J. M., Quasi maximum likelihood estimation and inference in dynamic models with time-varying covariances, Econometric Rev., 11, 143-172 (1992) · Zbl 0850.62884
[9] Bontemps, C.; Meddahi, N., Testing distributional assumptions: a GMM approach, J. Appl. Econometrics, 27, 978-1012 (2012)
[10] Breusch, T. S.; Pagan, A. R., The Lagrange multiplier test and its applications to model specification in econometrics, Rev. Econom. Stud., 47, 239-253 (1980) · Zbl 0465.62107
[11] Camponovo, L.; Scaillet, O.; Trojani, F., Predictive regression and robust hypothesis testing: predictability hidden by anomalous observations (2012), Swiss Finance Institute DP 2013.05
[12] Christoffersen, P. F.; Diebold, F. X., Financial asset returns, direction-of-change forecasting, and volatility dynamics, Manage. Sci., 52, 1273-1287 (2006)
[13] Creal, D. D.; Koopman, S. J.; Lucas, A., Generalized autoregressive score models with applications, J. Appl. Econometrics, 28, 777-795 (2013)
[14] Dalla, V.; Giraitis, L.; Phillips, P. C.B., Robust tests for white noise and cross-correlation (2019), Cowles Foundation Discussion Paper 2194
[15] Davies, R. B., Hypothesis testing when a nuisance parameter is present only under the alternative, Biometrika, 64, 247-254 (1977) · Zbl 0362.62026
[16] Davies, R. B., Hypothesis testing when a nuisance parameter is present only under the alternative, Biometrika, 74, 33-43 (1987) · Zbl 0612.62023
[17] Demos, A.; Sentana, E., Testing for garch effects: a one-sided approach, J. Econometrics, 86, 97-127 (1998) · Zbl 0962.62083
[18] Engle, R. F., Autoregressive conditional heteroskedasticity with estimates of the variance of United Kingdom inflation, Econometrica, 50, 987-1007 (1982) · Zbl 0491.62099
[19] Fama, E. F.; French, K. R., Common risk factors in the returns on stock and bonds, J. Financ. Econ., 33, 3-56 (1993) · Zbl 1131.91335
[20] Fama, E. F.; French, K. R., Size, value, and momentum in international stock returns, J. Financ. Econ., 105, 457-472 (2012)
[21] Fama, E. F.; French, K. R., A five-factor asset pricing model, J. Financ. Econ., 116, 1-22 (2015)
[22] Fiorentini, G.; Sentana, E., On the efficiency and consistency of likelihood estimation in multivariate conditionally heteroskedastic dynamic regression models (2007), CEMFI Working Paper 0713
[23] Fiorentini, G.; Sentana, E., Tests for serial dependence in static, non-Gaussian factor models, (Koopman, S. J.; Shephard, N., Unobserved components and time series econometrics (2015), Oxford University Press), 118-189
[24] Fiorentini, G.; Sentana, E., Consistent non-Gaussian pseudo-log likelihood estimators, J. Econometrics, 213, 321-358 (2019) · Zbl 1456.62189
[25] Fiorentini, G.; Sentana, E.; Calzolari, G., Maximum likelihood estimation and inference in multivariate conditionally heteroskedastic dynamic regression models with student \(t\) innovations, J. Bus. Econom. Statist., 21, 532-546 (2003)
[26] Francq, C.; Zakoïan, J.-M., GARCH models: structure, statistical inference and financial applications (2010), Wiley
[27] Giacomini, R.; Politis, D. N.; White, H., A warp-speed method for conducting Monte Carlo experiments involving bootstrap estimators, Econometric Theory, 29, 567-589 (2013) · Zbl 1272.62033
[28] Glejser, H., A new test for heteroskedasticity, J. Amer. Statist. Assoc., 64, 316-323 (1969)
[29] Godfrey, L. G., Misspecification tests in econometrics: the Lagrange multiplier principle and other approaches, Econometric Society Monographs (1988), Cambridge University Press · Zbl 0721.62111
[30] Gonçalves, S.; Kilian, L., Bootstrapping autoregressions with conditional heteroskedasticity of unknown form, J. Econometrics, 123, 89-120 (2004) · Zbl 1328.62517
[31] González-Rivera, G.; Ullah, A., Rao’s score test with nonparametric density estimators, J. Statist. Plann. Inference, 97, 85-100 (2001) · Zbl 0982.62043
[32] Hafner, C. M.; Herwartz, H., Testing for linear autoregressive dynamics under heteroskedasticity, Econom. J., 3, 177-197 (2000) · Zbl 0970.91058
[33] Hafner, C. M.; Rombouts, J. V.K., Semiparametric multivariate volatility models, Econometric Theory, 23, 251-280 (2007) · Zbl 1237.62117
[34] Harvey, A. C., Dynamic models for volatility and heavy tails: with applications to financial and economic time series, Econometric Society Monographs (2013), Cambridge University Press · Zbl 1326.62001
[35] Harvey, A. C.; Chakravarty, T., Beta-t-(e)-garch (2008), Cambridge Working Papers in Economics 08340
[36] Henriksson, R. D.; Merton, R. C., On market timing and investment performance II: statistical procedures for evaluating forecasting skills, J. Bus., 54, 513-533 (1981)
[37] Hodgson, D. J., Unconditional pseudo-maximum likelihood and adaptive estimation in the presence of conditional heterogeneity of unknown form, Econometric Rev., 19, 175-206 (2000) · Zbl 0949.62060
[38] Hodgson, D. J.; Vorkink, K. P., Efficient estimation of conditional asset pricing models, J. Bus. Econom. Statist., 21, 269-283 (2003)
[39] Hong, Y., Consistent testing for serial correlation of unknown form, Econometrica, 64, 837-864 (1996) · Zbl 0960.62559
[40] Hong, S. Y.; Linton, O.; Zhang, H. J., An investigation into multivariate variance ratio statistics and their application to stock market predictability, J. Financ. Econ., 15, 173-222 (2017)
[41] Hong, Y.; Shehadeh, R. S., A new test for arch effects and its finite sample performance, J. Bus. Econom. Statist., 17, 91-108 (1999)
[42] Jarque, C. M.; Bera, A. K., Efficient tests for normality, heteroskedasticity, and serial independence of regression residuals, Econ. Lett., 6, 255-259 (1980)
[43] Jondeau, E.; Rockinger, M., Conditional volatility, skewness and kurtosis: existence, persistence and comovements, J. Econom. Dynam. Control, 27, 1699-1737 (2001) · Zbl 1178.91226
[44] Koenker, R., A note on studentizing a test for heteroskedasticity, J. Econometrics, 17, 107-112 (1981) · Zbl 0485.62019
[45] León, A.; Mencía, J.; Sentana, E., Parametric properties of seminonparametric distributions, with applications to option valuation, J. Bus. Econom. Statist., 27, 176-192 (2009)
[46] Linton, O., Adaptive estimation in arch models, Econometric Theory, 9, 539-569 (1993)
[47] Linton, O.; Steigerwald, D., Adaptive testing in arch models, Econometric Rev., 19, 145-174 (2000) · Zbl 0949.62032
[48] Machado, J. A.F.; Santos Silva, J. M.C., Glejser’s test revisited, J. Econometrics, 97, 189-202 (2000) · Zbl 0970.62006
[49] Maronna, R.; Martin, D.; Yohai, V., Robust statistics - theory and methods (2006), Wiley · Zbl 1094.62040
[50] Mencía, J.; Sentana, E., Valuation of vix derivatives, J. Financ. Econ., 108, 367-391 (2013)
[51] Milhøj, A., The moment structure of arch processes, Scand. J. Stat., 12, 281-292 (1985) · Zbl 0595.62089
[52] Newey, W. K., Maximum likelihood specification testing and conditional moment tests, Econometrica, 53, 1047-1070 (1985) · Zbl 0629.62107
[53] Newey, W. K.; McFadden, D. L., Large sample estimation and hypothesis testing, (Engle, R. F.; McFadden, D. L., Handbook of Econometrics IV (1994), Elsevier), 2111-2245
[54] NAG Fortran 77 Library Mark 19 Reference Manual (2001)
[55] Prakasa Rao, B. L.S., Non-parametric functional estimation (1983), Academic Press · Zbl 0542.62025
[56] RiskMetrics Technical Document (1996)
[57] Robinson, P. M., The efficient estimation of the semiparametric spatial autoregressive model, J. Econometrics, 157, 6-17 (2010) · Zbl 1431.62417
[58] Ruud, P. A., An introduction to classical econometric theory (2000), Oxford University Press
[59] Silverman, B. W., Density estimation (1986), Chapman and Hall · Zbl 0617.62042
[60] Spiegel, M., Forecasting the equity premium: where we stand today, Rev. Financ. Stud., 24, 1453-1454 (2008)
[61] Stuart, A.; Ord, K., Kendall’s Advanced Theory of Statistics, Vol. 1 (1977), Griffin: Griffin London
[62] Tauchen, G., Diagnostic testing and evaluation of maximum likelihood models, J. Econometrics, 30, 415-443 (1985) · Zbl 0591.62094
[63] Taylor, S. J., Estimating the variances of autocorrelations calculated from financial time series, J. R. Stat. Soc. Ser. C. Appl. Stat., 33, 300-308 (1984)
[64] White, H., Maximum likelihood estimation of missspecified models, Econometrica, 50, 1-26 (1982)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.