×

zbMATH — the first resource for mathematics

Spots, stripes, and spiral waves in models for static and motile cells. GTPase patterns in cells. (English) Zbl 1460.92025
Summary: The polarization and motility of eukaryotic cells depends on assembly and contraction of the actin cytoskeleton and its regulation by proteins called GTPases. The activity of GTPases causes assembly of filamentous actin (by GTPases Cdc42, Rac), resulting in protrusion of the cell edge. Mathematical models for GTPase dynamics address the spontaneous formation of patterns and nonuniform spatial distributions of such proteins in the cell. Here we revisit the wave-pinning model for GTPase-induced cell polarization, together with a number of extensions proposed in the literature. These include introduction of sources and sinks of active and inactive GTPase (by the group of A. Champneys), and negative feedback from F-actin to GTPase activity. We discuss these extensions singly and in combination, in 1D, and 2D static domains. We then show how the patterns that form (spots, waves, and spirals) interact with cell boundaries to create a variety of interesting and dynamic cell shapes and motion.
MSC:
92C15 Developmental biology, pattern formation
92C17 Cell movement (chemotaxis, etc.)
92C37 Cell biology
35K57 Reaction-diffusion equations
Software:
AUTO; XPPAUT; FEniCS; MATCONT
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Alnaes, MS; Blechta, J.; Hake, J.; Johansson, A.; Kehlet, B.; Logg, A.; Richardson, C.; Ring, J.; Rognes, ME; Wells, GN, The FEniCS project version 1.5, Arch Numer Softw, 3, 100, 9-23 (2015)
[2] Bretschneider, T.; Anderson, K.; Ecke, M.; Müller-Taubenberger, A.; Schroth-Diez, B.; Ishikawa-Ankerhold, HC; Gerisch, G., The three-dimensional dynamics of actin waves, a model of cytoskeletal self-organization, Biophys J, 96, 7, 2888-2900 (2009)
[3] Buttenschön, A.; Liu, Y.; Edelstein-Keshet, L., Cell size, mechanical tension, and GTPase signaling in the single cell, Bull Math Biol, 82, 2, 1-33 (2019) · Zbl 1432.92012
[4] Buttenschön, A.; Liu, Y.; Edelstein-Keshet, L., Cell size, mechanical tension, and GTPase signaling in the single cell, Bull Math Biol, 82, 2, 28 (2020) · Zbl 1432.92012
[5] Champneys AR, Al Saadi F, Breña -Medina VF, Grieneisen VA, Marée AFM, Verschueren N, Wuyts B (2021) Bistability, wave pinning and localisation in natural reaction-diffusion systems. Phys D: Nonlinear Phenom 416(132735). doi:10.1016/j.physd.2020.132735
[6] Dhooge, A.; Govaerts, W.; Kuznetsov, YA, Matcont: a matlab package for numerical bifurcation analysis of odes, ACM Trans Math Softw(TOMS), 29, 2, 141-164 (2003) · Zbl 1070.65574
[7] Doedel, EJ, Auto: A program for the automatic bifurcation analysis of autonomous systems, Congr Numer, 30, 265-284 (1981) · Zbl 0511.65064
[8] Doubrovinski, K.; Kruse, K., Cell motility resulting from spontaneous polymerization waves, Phys Rev Lett, 107, 25, 258103 (2011)
[9] Edelstein-Keshet, L., Mathematical models in biology, SIAM (1988) · Zbl 0674.92001
[10] Edelstein-Keshet, L.; Holmes, WR; Zajac, M.; Dutot, M., From simple to detailed models for cell polarization, Philos Trans R Soc Lond B Biol Sci, 368, 1629, 20130003 (2013)
[11] Ermentrout, B., Simulating, analyzing, and animating dynamical systems: a guide to XPPAUT for researchers and students, Society for Industrial and Applied Mathematics (2002) · Zbl 1003.68738
[12] Grieneisen V (2009) Dynamics of auxin patterning in plant morphogenesis-a multilevel model study. PhD thesis, University Utrecht
[13] Holmes, WR, An efficient, nonlinear stability analysis for detecting pattern formation in reaction diffusion systems, Bull Math Biol, 76, 1, 157-183 (2014) · Zbl 1283.92011
[14] Holmes, WR; Edelstein-Keshet, L., Analysis of a minimal Rho-GTPase circuit regulating cell shape, Phys Biol, 13, 4, 046001 (2016)
[15] Holmes, WR; Carlsson, AE; Edelstein-Keshet, L., Regimes of wave type patterning driven by refractory actin feedback: transition from static polarization to dynamic wave behaviour, Phys Biol, 9, 4, 046005 (2012)
[16] Holmes, WR; Lin, B.; Levchenko, A.; Edelstein-Keshet, L., Modelling cell polarization driven by synthetic spatially graded RAC activation, PLoS Comput Biol, 8, 6, e1002366 (2012)
[17] Holmes, WR; Mata, MA; Edelstein-Keshet, L., Local perturbation analysis: a computational tool for biophysical reaction-diffusion models, Biophys J, 108, 2, 230-236 (2015)
[18] Inagaki, N.; Katsuno, H., Actin waves: origin of cell polarization and migration?, Trends Cell Biol, 27, 7, 515-526 (2017)
[19] Jilkine, A.; Edelstein-Keshet, L., A comparison of mathematical models for polarization of single eukaryotic cells in response to guided cues, PLoS Comput Biol, 7, 4, 1-15 (2011)
[20] Kuznetsov, Y., Elements of applied bifurcation theory (2004), Berlin: Springer, Berlin · Zbl 1082.37002
[21] Liu Y (2019) Analysis of pattern formation in reaction-diffusion models for cell polarization. MSc thesis, University of British Columbia
[22] Magno, R.; Grieneisen, VA; Marée, AF, The biophysical nature of cells: potential cell behaviours revealed by analytical and computational studies of cell surface mechanics, BMC Biophys, 8, 1, 8 (2015)
[23] Marée AFM, Grieneisen VA, Hogeweg P (2007) The cellular potts model and biophysical properties of cells, tissues and morphogenesis. In: Anderson ARA, Chaplain MAJ, Rejniak KA (eds) Single-cell-based models in biology and medicine. Birkhäuser, Basel, pp 107-136. doi:10.1007/978-3-7643-8123-3_5
[24] Marée, AF; Komba, M.; Finegood, DT; Edelstein-Keshet, L., A quantitative comparison of rates of phagocytosis and digestion of apoptotic cells by macrophages from normal (BALB/c) and diabetes-prone (NOD) mice, J Appl Physiol, 104, 1, 157-169 (2008)
[25] Marée, AF; Grieneisen, VA; Edelstein-Keshet, L., How cells integrate complex stimuli: the effect of feedback from phosphoinositides and cell shape on cell polarization and motility, PLoS comput Biol, 8, 3, e1002402 (2012)
[26] Mata, MA; Dutot, M.; Edelstein-Keshet, L.; Holmes, WR, A model for intracellular actin waves explored by nonlinear local perturbation analysis, J Theor Biol, 334, 149-161 (2013) · Zbl 1397.92166
[27] Mori, Y.; Jilkine, A.; Edelstein-Keshet, L., Wave-pinning and cell polarity from a bistable reaction-diffusion system, Biophys J, 94, 9, 3684-3697 (2008)
[28] Mori, Y.; Jilkine, A.; Edelstein-Keshet, L., Asymptotic and bifurcation analysis of wave-pinning in a reaction-diffusion model for cell polarization, SIAM J Appl Math, 71, 4, 1401-1427 (2011) · Zbl 1232.92046
[29] Otsuji, M.; Ishihara, S.; Kaibuchi, K.; Mochizuki, A.; Kuroda, S., A mass conserved reaction-diffusion system captures properties of cell polarity, PLoS Comput Biol, 3, 6, e108 (2007)
[30] Painter, KJ; Hillen, T., Spatio-temporal chaos in a chemotaxis model, Phys D Nonlinear Phenom, 240, 4-5, 363-375 (2011) · Zbl 1255.37026
[31] Rappel, WJ; Edelstein-Keshet, L., Mechanisms of cell polarization, Curr Opin Syst Biol, 3, 43-53 (2017)
[32] Michaux, JB; Robin, FB; McFadden, WM; Munro, EM, Excitable RhoA dynamics drive pulsed contractions in the early C. elegans embryo, J Cell Biol, 217, 12, 4230-4252 (2018)
[33] Scianna, M.; Preziosi, L.; Wolf, K., A cellular Potts model simulating cell migration on and in matrix environments, Math Biosci Eng, 10, 1, 235-261 (2013) · Zbl 1259.92024
[34] Turing, AM, The chemical basis of morphogenesis, Philos Trans R Soc Lond Ser B Biol Sci, 237, 641, 37-72 (1952) · Zbl 1403.92034
[35] Vanderlei, B.; Feng, JJ; Edelstein-Keshet, L., A computational model of cell polarization and motility coupling mechanics and biochemistry, Multiscale Model Simul, 9, 4, 1420-1443 (2011) · Zbl 1244.74089
[36] Verschueren, N.; Champneys, A., A model for cell polarization without mass conservation, SIAM J Appl Dyn Syst, 16, 4, 1797-1830 (2017) · Zbl 1386.35013
[37] Walther, GR; Marée, AF; Edelstein-Keshet, L.; Grieneisen, VA, Deterministic versus stochastic cell polarisation through wave-pinning, Bull Math Biol, 74, 11, 2570-2599 (2012) · Zbl 1362.92018
[38] Zmurchok, C.; Bhaskar, D.; Edelstein-Keshet, L., Coupling mechanical tension and GTPase signaling to generate cell and tissue dynamics, Phys Biol, 15, 4, 046004 (2018)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.