zbMATH — the first resource for mathematics

A generic finite element framework on parallel tree-based adaptive meshes. (English) Zbl 07328656
65Y05 Parallel numerical computation
65Y20 Complexity and performance of numerical algorithms
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65M50 Mesh generation, refinement, and adaptive methods for the numerical solution of initial value and initial-boundary value problems involving PDEs
Full Text: DOI
[1] J. Holke, Scalable Algorithms for Parallel Tree-based Adaptive Mesh Refinement with General Element Types, Ph.D. thesis, Bonn University, Bonn, Germany, 2018.
[2] C. Burstedde, L. C. Wilcox, and O. Ghattas, p4est: Scalable algorithms for parallel adaptive mesh refinement on forests of octrees, SIAM J. Sci. Comput., 33 (2011), pp. 1103-1133, https://doi.org/10.1137/100791634. · Zbl 1230.65106
[3] T. Isaac, C. Burstedde, L. C. Wilcox, and O. Ghattas, Recursive algorithms for distributed forests of octrees, SIAM J. Sci. Comput., 37 (2015), pp. C497-C531, https://doi.org/10.1137/140970963. · Zbl 1323.65105
[4] H. Sundar, R. S. Sampath, and G. Biros, Bottom-up construction and 2:1 balance refinement of linear octrees in parallel, SIAM J. Sci. Comput., 30 (2008), pp. 2675-2708, https://doi.org/10.1137/070681727. · Zbl 1186.68554
[5] C. Burstedde and J. Holke, A tetrahedral space-filling curve for nonconforming adaptive meshes, SIAM J. Sci. Comput., 38 (2016), pp. C471-C503, https://doi.org/10.1137/15M1040049. · Zbl 1348.65173
[6] L. C. Wilcox, G. Stadler, C. Burstedde, and O. Ghattas, A high-order discontinuous Galerkin method for wave propagation through coupled elastic-acoustic media, J. Comput. Phys., 229 (2010), pp. 9373-9396, https://doi.org/10.1016/J.JCP.2010.09.008. · Zbl 1427.74071
[7] J. Rudi, O. Ghattas, A. C. I. Malossi, T. Isaac, G. Stadler, M. Gurnis, P. W. J. Staar, Y. Ineichen, C. Bekas, and A. Curioni, An extreme-scale implicit solver for complex PDEs: Highly heterogeneous flow in earth’s mantle, in Proceedings of the International Conference for High Performance Computing, Networking, Storage, and Analysis - SC ’15, ACM, New York, 2015, pp. 1-12, https://doi.org/10.1145/2807591.2807675.
[8] M. Olm, S. Badia, and A. F. Martín, Simulation of high temperature superconductors and experimental validation, Comput. Phys. Commun., 237 (2018), pp. 154-167, https://doi.org/10.1016/J.CPC.2018.11.021.
[9] E. Neiva, S. Badia, A. F. Martín, and M. Chiumenti, A scalable parallel finite element framework for growing geometries. Application to metal additive manufacturing, Internat. J. Numer. Methods Engrg., 119 (2019), pp. 1098-1125.
[10] S. Badia, A. F. Martín, and F. Verdugo, Mixed aggregated finite element methods for the unfitted discretization of the Stokes problem, SIAM J. Sci. Comput., 40 (2018), pp. B1541-B1576, https://doi.org/10.1137/18M1185624. · Zbl 1412.65184
[11] S. Badia, F. Verdugo, and A. F. Martín, The aggregated unfitted finite element method for elliptic problems, Comput. Methods Appl. Mech. Engrg., 336 (2018), pp. 533-553, https://doi.org/10.1016/j.cma.2018.03.022. · Zbl 1440.65175
[12] W. C. Rheinboldt and C. K. Mesztenyi, On a data structure for adaptive finite element mesh refinements, ACM Trans. Math. Software, 6 (1980), pp. 166-187, https://doi.org/10.1145/355887.355891. · Zbl 0437.65081
[13] M. S. Shephard, Linear multipoint constraints applied via transformation as part of a direct stiffness assembly process, Internat. J. Numer. Methods Engrg., 20 (1984), pp. 2107-2112, https://doi.org/10.1002/nme.1620201112. · Zbl 0547.73069
[14] W. Bangerth, C. Burstedde, T. Heister, and M. Kronbichler, Algorithms and data structures for massively parallel generic adaptive finite element codes, ACM Trans. Math. Software, 38 (2012), 14, https://doi.org/10.1145/2049673.2049678. · Zbl 1365.65247
[15] W. Bangerth, R. Hartmann, and G. Kanschat, DEAL.\(II\)—A general-purpose object-oriented finite element library, ACM Trans. Math. Software, 33 (2007), https://doi.org/10.1145/1268776.1268779. · Zbl 1365.65248
[16] S. Badia, A. F. Martín, and J. Principe, A highly scalable parallel implementation of balancing domain decomposition by constraints, SIAM J. Sci. Comput., 36 (2014), pp. C190-C218, https://doi.org/10.1137/130931989. · Zbl 1296.65177
[17] S. Badia, A. F. Martín, and J. Principe, Multilevel balancing domain decomposition at extreme scales, SIAM J. Sci. Comput., 38 (2016), pp. C22-C52, https://doi.org/10.1137/15M1013511. · Zbl 1334.65217
[18] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, K. Rupp, B. F. Smith, S. Zampini, H. Zhang, and H. Zhang, PETSc Users Manual, Technical Report ANL-95/11 - Revision 3.7, Argonne National Laboratory, Argonne, IL, 2016.
[19] M. A. Heroux, R. A. Bartlett, V. E. Howle, R. J. Hoekstra, J. J. Hu, T. G. Kolda, R. B. Lehoucq, K. R. Long, R. P. Pawlowski, E. T. Phipps, A. G. Salinger, H. K. Thornquist, R. S. Tuminaro, J. M. Willenbring, A. Williams, and K. S. Stanley, An Overview of the Trilinos Project, ACM Trans. Math. Software, 31 (2005), pp. 397-423, https://doi.org/10.1145/1089014.1089021. · Zbl 1136.65354
[20] S. Badia, A. F. Martín, and J. Principe, FEMPAR: An object-oriented parallel finite element framework, Arch. Comput. Methods Eng., 25 (2018), 195-271, https://doi.org/10.1007/s11831-017-9244-1. · Zbl 1392.65005
[21] T. Isaac, C. Burstedde, and O. Ghattas, Low-cost parallel algorithms for \(2{:}1\) octree balance, in Proceedings of the 2012 IEEE 26th International Parallel and Distributed Processing Symposium, IEEE, Piscataway, NJ, 2012, pp. 426-437, https://doi.org/10.1109/IPDPS.2012.47.
[22] M. Olm, S. Badia, and A. F. Martín, On a general implementation of \(h\)- and \(p\)-adaptive curl-conforming finite elements, Adv. Eng. Software, 132 (2019), pp. 74-91, https://doi.org/10.1016/J.ADVENGSOFT.2019.03.006.
[23] J. Cervený, V. Dobrev, and T. Kolev, Nonconforming mesh refinement for high-order finite elements, SIAM J. Sci. Comput., 41 (2019), pp. C367-C392, https://doi.org/10.1137/18M1193992. · Zbl 07105497
[24] D. W. Kelly, J. P. De S. R. Gago, O. C. Zienkiewicz, and I. Babuska, A posteriori error analysis and adaptive processes in the finite element method: Part I: Error analysis, Internat. J. Numer. Methods Engrg., 19 (1983), https://doi.org/10.1002/nme.1620191103. · Zbl 0534.65068
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.