zbMATH — the first resource for mathematics

A many-objective particle swarm optimizer based on indicator and direction vectors for many-objective optimization. (English) Zbl 1457.90146
Summary: Balancing the convergence and diversity simultaneously is very challenging for traditional many-objective evolutionary algorithms on solving many objective optimization problems (MaOPs). A novel many-objective particle swarm optimization (PSO) algorithm based on the unary epsilon indicator and the direction vectors, termed as IDMOPSO, is proposed to robustly and effectively address MaOPs. The strategies of selecting personal best (pbest) and global best (gbest) take both the convergence and diversity into consideration. The selection of personal best is based on the unary epsilon indicator and the Pareto dominance to enhance the capability of local exploration. Apart from this, an external archive based on the unary epsilon indicator and the direction vectors is used to maintain the non-dominated solutions found during the search process. Extensive comparative experiments on DTLZ, \(\mathrm{DTL}Z^{-1}\), WFG, and \(\mathrm{WFG}^{-1}\) problems with varied number of objectives show that IDMOPSO is effective and flexible in addressing MaOPs. The effectiveness of the proposed strategies is also analyzed in detail.
90C29 Multi-objective and goal programming
90C59 Approximation methods and heuristics in mathematical programming
Full Text: DOI
[1] Bader, J.; Zitzler, E., HypE: an algorithm for fast hypervolume-based many-objective optimization, Evol. Comput., 19, 1, 45-76 (2011)
[2] Beumea, N.; Emmerich, M., Sms-emoa: multiobjective selection based on dominated hypervolume, Eur. J. Oper. Res., 181, 3, 1653-1669 (2007) · Zbl 1123.90064
[3] Britto, A.; Pozo, A., I-mopso: a suitable PSO algorithm for many-objective optimization, (Eleventh Brazilian Symposium on Neural Networks (2012), IEEE Computer Society), 166-171
[4] Cai, L.; Qu, S.; Cheng, G., Two-archive method for aggregation-based many-objective optimization, Inf. Sci., 422, 305-317 (2018)
[5] Cai, X.; Li, Y.; Fan, Z.; Zhang, Q., An external archive guided multiobjective evolutionary algorithm based on decomposition for combinatorial optimization, IEEE Trans. Evol. Comput., 19, 4, 508-523 (2015)
[6] Castro, O.; Santana, R.; Pozo, A., C-Multi: A competent multi-swarm approach for many-objective problems, Neurocomputing, 180, 68-78 (2016)
[7] Coello, C. A.C.; Lechuga, M. S., MOPSO: a proposal for multiple objective particle swarm optimization, (Proc of IEEE Congress on Evolutionary Computation (2002), IEEE Press: IEEE Press Piscataway, NJ), 1051-1056
[8] Das, I.; Dennis, J., Normal-boundary intersection: a new method for generating the Pareto surface in nonlinear multicriteria optimization problems, SIAM J. Optimiz., 8, 3, 631-657 (1998) · Zbl 0911.90287
[9] Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T., A fast and elitist multi-objective genetic algorithm: NSGA-II, IEEE Trans. Evol. Comput., 6, 2, 182-197 (2002)
[10] Deb, K.; Jain, H., An evolutionary many-objective optimization algorithm using reference-point-based non-dominated sorting approach, part I: solving problems with box constraints, IEEE Trans. Evol. Comput., 18, 4, 577-601 (2014)
[11] Deb, K.; Kalyanmoy, D., Multi-objective Optimization Using Evolutionary Algorithms (2008), John Wiley & Sons
[12] Deb, K.; Mohan, M.; Mishra, S., Evaluating the epsilon-domination based multi-objective evolutionary algorithm for a quick computation of Pareto-optimal solutions, Evol. Comput., 13, 4, 501-525 (2005)
[13] Deb, K.; Thiele, L.; Laumanns, M.; Zitzler, E., Scalable multi-objective optimization test problems, (Proc. IEEE Congr. Evol. Comput. (2002)), 825-830
[14] Hernandez Gomez, R.; Coello, C. C., MOMBI: A new metaheuristic for many-objective optimization based on the R2 indicator, Evol. Comput., 2488-2495 (2013)
[15] Huang, Y.; Ding, Y.; Hao, K., A multi-objective approach to robust optimization over time considering switching cost, Inf. Sci., 394-395, 183-197 (2017)
[16] Huband, S.; Hingston, P.; Barone, L., A review of multiobjective test problems and a scalable test problem toolkit, IEEE Trans. Evol. Comput., 10, 50, 477-506 (2006)
[17] Ishibuchi, H.; Setoguchi, Y.; Masuda, H.; Nojima, Y., Performance of decomposition-based many-objective algorithms strongly depends on pareto front shapes, IEEE Trans. Evol. Comput., 21, 2, 169-190 (2017)
[18] Jain, H.; Deb, K., An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part II: handling constraints and extending to an adaptive approach, IEEE Trans. Evol. Comput., 18, 4, 602-622 (2014)
[19] Jiang, S.; Yang, S., A strength pareto evolutionary algorithm based on reference direction for multiobjective and many-objective optimization, (IEEE Trans. Evol. Comput., 21 (2017)), 329-346
[20] Kennedy, J.; Eberhart, R., Particle swarm optimization, (Neural Networks, 1995. Proceedings., IEEE International Conference on, 4 (1995), IEEE), 1942-1948
[21] Li, K.; Kwong, S.; Cao, J., Achieving balance between proximity and diversity in multi-objective evolutionary algorithm, Inf. Sci., 182, 1, 220-242 (2012)
[22] Li, L.; Xu Wang, W., Multi-objective particle swarm optimization based on global margin ranking, Inf. Sci., 375, 1, 30-47 (2017)
[23] Liang, Y.; He, W.; Zhong, W.; Qian, F.; Liang, Y., Objective reduction particle swarm optimizer based on maximal information in coefficient for many-objective problems, Neurocomputing, 000, 1-11 (2017)
[24] Lin, Q.; Ma, Y.; Chen, J., An adaptive immune-inspired multi-objective algorithm with multiple differential evolution strategies, Inf. Sci., 430-431, 46-64 (2018)
[25] J. Luo, X. Huang, X. Li, K. Gao. A novel particle swarm optimizer for many-objective optimization. IEEE Congress on Evolutionary Computation (CEC) (pp. 958-965).
[26] Luo, J.; Yang, Y.; Liu, Q., A new hybrid memetic multi-objective optimization algorithm for multi-objective optimization, Inf. Sci., 449C, 164-186 (2018)
[27] Mart´ınez, S.; Coello Coello, C., A multi-objective particle swarm optimizer based on decomposition, (Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, GECCO’11 (2011), ACM)
[28] Mostaghim, S.; Teich, J., Strategies for finding good local guides in multi-objective particle swarm optimization, (Swarm Intelligence Symposium (2003), IEEE), 26-33
[29] Moubayed, N. AI.; Pertovski, A.; Mc Call, J., A novel smart multi-objective particle swarm optimization using decomposition. Parallel Problem Solving from Nature-PPSNXI, PTII, Lecture Notes Comput. Sci., 6239, 1-10 (2010)
[30] Moubayed, N. AI.; Pertovski, A.; McCall, J., D2MOPSO: MOPSO based on decomposition and dominance with archiving using crowding distance in objective and solution spaces, Evol. Comput., 22, 47-77 (2014)
[31] Nebro, A. J.; Durillo, J. J.; Garcia-Nieto, J.; Coello, C. C.A.; Luna, F.; Alba, E., SMPSO: A new PSO-based metaheuristic for multi-objective optimization, (Proceedings of IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making (2009)), 66-73
[32] Quintana, C.; Millwater, H. R.; Golden, G. S.P., Optimal allocation of testing resources for statistical simulations, Eng. Optim., 47, 7, 979-993 (2015)
[33] Raquel, C. R.; Naval, P. C., An effective use of crowding distance in multiobjective particle swarm optimization, (Genetic & Evolutionary Computation Conference (2005)), 257-264
[34] Reyes-Sierra, M.; Coello, C. C.A., Multi-objective particle swarm optimizers: a survey of the state-of-the-art, Int. J. Comput. Intell. Res., 2, 3, 287-308 (2012)
[35] Sadollah, A.; Eskandar, H.; Kim, H. J., Water cycle algorithm for solving constrained multi-objective optimization problems, Appl. Soft Comput., 27, 279-298 (2015)
[36] Sadollah, A.; Eskandar, H.; Bahreininejad, A.; Kim J, H., Water cycle algorithm for solving multi-objective optimization problems, Soft Comput., 19, 9, 2587-2603 (2015)
[37] Sierra, M. R.; Coello, C. C.A., Improving PSO-based multi-objective optimization using crowding, mutation and epsilon-dominance. Evolutionary Multi-criterion Optimization, Lecture Notes Comput. Sci., 3410, 505-519 (2005) · Zbl 1109.68631
[38] Tian, Y.; Cheng, R.; Zhang, X.; Jin PlatEMO, Y., A MATLAB platform for evolutionary multi-objective optimization, IEEE Comput. Intell. Mag., 12, 4, 73-87 (2017)
[39] Trivedi, A.; Srinivasan, D.; Sanyal, K.; Ghosh, A., A survey of multiobjective evolutionary algorithms based on decomposition, IEEE Trans. Evol. Comput., 21, 3, 440-462 (2017)
[40] Wang, H.; Jiao, L.; Yao, X., Two_Arch2: an improved two-archive algorithm for many-objective optimization, IEEE Trans. Evol. Comput., 19, 4, 524-541 (2015)
[41] Wang, G.; Jiang, H., Fuzzy-dominance and its application in evolutionary many-objective optimization, (Computational Intelligence and Security Workshops, International Conference On (2007), IEEE Computer Society), 195-198
[42] While, L.; Bradstreet, L.; Barone, L., A fast way of calculating exact hypervolumes, IEEE Trans. Evol. Comput., 16, 1, 86-95 (2012)
[43] Yang, S. X.; Li, M. Q.; Liu, X. H.; Zheng, J. H., A grid-based evolutionary algorithm for many-objective optimization, IEEE Trans. Evol. Comput., 17, 5, 721-736 (2013)
[44] Yuan, Y.; Xu, H.; Wang, B.; Zhang, B.; Yao, X., Balancing convergence and diversity in decomposition-based many-objective optimizers, IEEE Trans. Evol. Comput., 20, 2, 180-198 (2016)
[45] Zhang, Q. F.; Li MOEA/D, H., A multiobjective evolutionary algorithm based on decomposition, IEEE Trans. Evol. Comput., 11, 6, 712-731 (2007)
[46] Zitzler, E.; Kunzli, S., Indicator-Based selection in multiobjective search, (Proc. of the Parallel Problem Solving from Nature (PPSN VIII). LNCS 3242 (2004), Springer-Verlag: Springer-Verlag Berlin, Heidelberg), 832-842
[47] Zitzler, E.; Laumanns, M.; SPEA2, Thiele L., Improving the strength Pareto evolutionary algorithm for multiobjective optimization, (Proc. of the Evolutionary Methods for Design, Optimisation and Control. Athens: International Center for Numerical Methods in Engineering (2002)), 95-100
[48] Zitzler, E., Performance assessment of multiobjective optimizers: an analysis and review, IEEE Trans. Evol. Comput., 7, 2, 117-132 (2003)
[49] Zou, X. F.; Chen, Y.; Liu, M. Z.; Kang, L. S., A new evolutionary algorithm for solving many-objective optimization problems, IEEE Trans. Syst. Man Cybern. Part B, 38, 5, 1402-1412 (2008)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.