×

Nouvelles méthodes pour minorer des combinaisons linéaires de logarithmes de nombres algébriques. (New methods for lower bounds of linear forms in logarithms of algebraic numbers). (French) Zbl 0733.11020

Bisher war Bakers Methode im Fall \(n\geq 3\) die einzige, die zu effektiven unteren Schranken für nichttriviale Linearformen \(\beta_ 1 \log \alpha_ 1+...+\beta_ n \log \alpha_ n\) in Logarithmen algebraischer \(\alpha_ 1,...,\alpha_ n\) führte. Während jedoch Bakers Ansatz Gel’fonds Lösung des siebten Hilbert-Problems verallgemeinerte, basiert der Ansatz des Verf. auf Schneiders Lösung des genannten Problems. Verf. benutzt dabei weder eine Extrapolationstechnik noch Kummertheorie; auch sind seine Hilfsfunktionen gänzlich von den Bakerschen verschieden. Seine Methode ist dual (im Sinne seiner Arbeit [J. Anal. Math. 56, 231-254, 255-279 (1991)]) zu der von N. Hirata-Kohno [Sémin. Théor. Nombres Paris 1988-89, Prog. Math. 91, 117-140 (1990; Zbl 0716.11033)] im elliptischen Fall angewandten und führt in der hier behandelten Situation \(\beta_ 1,...,\beta_ n\in {\mathbb{Z}}\) zu einem völlig expliziten Resultat (Théorème 1.1), das quantitativ dieselbe Güte erreicht, wie sie Bakers Methode heute herzuleiten gestattet.

MSC:

11J86 Linear forms in logarithms; Baker’s method
11J82 Measures of irrationality and of transcendence

Citations:

Zbl 0716.11033
PDF BibTeX XML Cite
Full Text: DOI Numdam Numdam EuDML

References:

[1] ] Baker, A., The theory of linear forms in logarithms, Chap.1 de: Transcendence Theory: Advances and Applications, ed. A.Baker and D.W.Masser, Academic Press (1977), 1-27.. · Zbl 0361.10028
[2] ] Blass, J., Glass, A.M., Manski, D.K., Meronk, D.B. and Steiner, R.P., Constants for lower bounds for linear forms in the logarithms of algebraic numbers, Acta Arith.55 (1990), 1-22. · Zbl 0709.11037
[3] ] Gel’fond, A.O., Transcendental and algebraic numbers, Moscou (1952), Dover, New-York (1960).. · Zbl 0090.26103
[4] Hirata, N., Formes linéaires d’intégrales elliptiques, Séminaire de Théorie des Nombres, Paris1988- 89, Birkhäuser Verlag, P.M.91 (1990), 117-140. · Zbl 0716.11033
[5] Mignotte, M. and Waldschmidt, M., Linear forms in two logarithms and Schneider’s method, Math. Ann.231 (1978), 241-267. · Zbl 0349.10029
[6] Mignotte, M. and Waldschmidt, M., Linear forms in two logarithms and Schneider’s method, II, Acta Arith.53 (1989), 251-287. · Zbl 0642.10034
[7] Mignotte, M. and Waldschmidt, M., Linear forms in two logarithms and Schneider’s method, III, Ann. Fac. Sci. Toulouse97 (1989), 43-75. · Zbl 0702.11044
[8] Philippon, P., Lemme de zéros dans les groupes algébriques commutatifs, Bull. Soc. Math. France114, (1986), 355-383, et 115 (1987), 397-398. · Zbl 0617.14001
[9] Philippon, P. et Waldschmidt, M., Formes linéaires de logarithmes sur les groupes algébriques commutatifs, Illinois J. Math.32 (1988), 281-314. · Zbl 0651.10023
[10] P, Philippon and M, Waldschmidt, Lower bounds for linear forms in logarithms, in: New Advances in Transcendence Theory, ed. A.Baker, Cambridge Univ. Press (1988), 280-312. · Zbl 0659.10037
[11] Schneider, Th., Transzendenzuntersuchungen periodischer Funktionen. I. Transzendenz von Potenzen, J. reine angew. Math.172 (1934), 65-69, Approximate formulas for some functions of prime numbers, Illinois J. Math., 6 (1962), 64-94.[RS] Rösser, J.B. and Schoenfeld, L. · JFM 60.0163.03
[12] Waldschmidt, M., Transcendence methods Queen’s Papers in Pure and Applied Mathematics. · Zbl 0432.10016
[13] Waldschmidt, M., A lower bound for linear forms in logarithms, Acta Arith.37 (1980), 257-283. · Zbl 0357.10017
[14] Waldschmidt, M., On the transcendence methods of Gel’fond and Schneider in several variables, New Advances in Transcendence Theory, ed. A. Baker, Cambridge Univ. Press (1988), Chap. 24, 375-398. · Zbl 0659.10035
[15] Waldschmidt, M., Fonctions auxiliaires et fonctionnelles analytiques, J. Analyse Math., à paraître. · Zbl 0742.11035
[16] Wüstholz, G., A new approach to Baker’s theorem on linear forms in logarithms (III), in New Advances in Transcendence Theory ed. A. Baker, Cambridge Univ. Press (1988), Chap. 25, 399-410. · Zbl 0659.10036
[17] Yu, Kunrui, Linear forms in p-adic logarithms, Acta Arith.53 (1989), 107-186. · Zbl 0699.10050
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.