del Pino, Manuel A.; Elgueta, Manuel; Manásevich, Raúl Generalizing Hartman’s oscillation result for \((| x'| ^{p- 2}x')'+c(t)| x| ^{p-2}x=0\), \(p>1\). (English) Zbl 0733.34039 Houston J. Math. 17, No. 1, 63-70 (1991). The authors give a sufficient condition in order that the differential equation \[ (| x'|^{p-2}x')'+c(t)| x|^{p-2}x=0,\quad p>1,\quad '=d/dt, \] is oscillatory. The result is a simple extension to the nonlinear case of a result of Hartman. Reviewer: A.Laforgia (Potenza) Cited in 1 ReviewCited in 12 Documents MSC: 34C10 Oscillation theory, zeros, disconjugacy and comparison theory for ordinary differential equations 34A34 Nonlinear ordinary differential equations and systems Keywords:nonlinear differential equations; oscillatory solutions PDF BibTeX XML Cite \textit{M. A. del Pino} et al., Houston J. Math. 17, No. 1, 63--70 (1991; Zbl 0733.34039)