×

zbMATH — the first resource for mathematics

Asymptotic representation of the weights in the Gauss quadrature formula. (English. Russian original) Zbl 0733.41033
Math. Notes 47, No. 4, 354-358 (1990); translation from Mat. Zametki 47, No. 4, 63-68 (1990).
Consider the quadrature formula of Gauss-Jacobi for Legendre’s weight dx on [0,1]. Given n, let \(\lambda_{n,j}\), \(j=1,2,...,n\), be the Christoffel coefficient corresponding to the zero \(x_{n,j}\), \(j=1,2,...,n\), of the nth Legendre orthogonal polynomial. Set cos \(\theta\) \({}_{n,j}=x_{n,j}\). It is proved that \[ \lambda_{n,j}=\frac{\pi}{2n+1}\sin \theta_{n,j}+O(\frac{1}{n^ 3\sin \theta_{n,j}}). \]
MSC:
41A55 Approximate quadratures
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] V. E. Krylov, Approximate Calculations of Integrals, Macmillan, New York (1962). · Zbl 0111.31801
[2] R. A. DeVore and L. R. Scott, ?Error bounds for Gaussian quadrature and weighted L1 polynomial approximation,? SIAM J. Numer. Anal.,21, No. 2, 400-412 (1984). · Zbl 0565.41028 · doi:10.1137/0721030
[3] G. Sege, Orthogonal Polynomials [in Russian], Fizmatgiz, Moscow (1962).
[4] M. E. Abramovitz and E. Stigan, Handbook of Special Functions with Formulas, Graphs, and Mathematical Tables [in Russian], Nauka, Moscow (1979).
[5] P. K. Suetin, Orthogonal Polynomials [in Russian], Nauka, Moscow (1979).
[6] A. S. Kronrod, Nodes and Weights of Quadrature Formulas (sixteen-digit tables), Consultants Bureau, New York (1965). · Zbl 0154.18501
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.