×

Coercive and semicoercive hemivariational inequalities. (English) Zbl 0733.49012

The aim is the formulation of an abstract mathematical theory for coercive and semicoercive hemivariational inequalities, i.e. for the problem: find \(u\in V\) satisfying the inequality \[ a(u,v- u)+\int_{\Omega}j^ 0(u,v-u)d\Omega \geq (\ell,v-u),\text{ for all } v\in V \] and the coercive variational hemivariational inequality \[ a(u,v-u)+\int_{\Omega}j^ 0(u,v-u)d\Omega +\Phi (v)-\Phi (u)\geq (\ell,v-u)\text{ for all } v\in V. \]

MSC:

49J40 Variational inequalities
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Aubin, J.P., Applied functional analysis, (1979), John Wiley New York
[2] Chang, K.C., Variational methods for non-differentiable functionals and their applications to partial differential equations, J. math. analysis applic., 80, 102-129, (1981) · Zbl 0487.49027
[3] Clarke, F.H., Generalized gradient and applications, Trans. am. math. soc., 205, 247-262, (1975) · Zbl 0307.26012
[4] Clarke, F.H., Optimization and nonsmooth analysis, (1983), John Wiley New York · Zbl 0727.90045
[5] Dunford, N.; Schwartz, J., Linear operators, part I: general theory, (1966), Interscience New York
[6] Duvaut, G.; Lions, J.L., LES inéquations en Mécanique et en physique, (1972), Dunod Paris · Zbl 0298.73001
[7] Ekeland, I.; Temam, R., Convex analysis and variational problems, (1976), North-Holland Amsterdam
[8] Fichera, G., Problemi elastostatici con vincoli unilaterali: il problema di Signorini con ambique condizioni al contorno, Mem. accad. naz. lincei VIII, 7, 91-140, (1964) · Zbl 0146.21204
[9] Fichera, G., Existence theorems in elasticity, () · Zbl 0317.73008
[10] Landesman, E.M.; Lazer, A.C., Nonlinear perturbations of linear elliptic boundary value problems at resonance, J. math. mech., 19, 609-623, (1970) · Zbl 0193.39203
[11] Lions, J.L., Quelques Méthodes de Résolution des problèmes aux limites non-linéaires, (1969), Dunod/Gauthier-Villars Paris · Zbl 0189.40603
[12] Lions, J.L.; Stampacchia, G., Variational inequalities, Communs pure appl. math., XX, 493-519, (1967) · Zbl 0152.34601
[13] McKenna, P.J.; Rauch, J., Strongly nonlinear perturbations of nonnegative boundary value problems with kernel, J. diff. eqns, 28, 253-265, (1978) · Zbl 0405.34019
[14] Moreau, J.J., La notion de sur-potential et LES liaisons unilatérales en élastostatique, C. r. acad. sci. Paris, 267A, 954-957, (1968) · Zbl 0172.49802
[15] Naniewicz, Z., On some nonconvex variational problems related to hemivariational inequalities, Nonlinear analysis, 13, 87-100, (1989) · Zbl 0696.49018
[16] Naniewicz, Z., On some nonmonotone subdifferential boundary conditions in elastostatics, Ing. archiv., 58, 403-412, (1988) · Zbl 0675.73006
[17] Naniewicz, Z.; Woźniak, C.Z., On the quasi-stationary models of debonding processes in layered composites, Ing. archiv, 60, 31-40, (1989)
[18] Panagiotopoulos, P.D., Non-convex superpotentials in the sense of F. H. Clarke and applications, Mech. res. comm., 8, 335-340, (1981) · Zbl 0497.73020
[19] Panagiotopoulos, P.D., Nonconvex energy functions. hemivariational inequalities and substationary principles, Acta mech., 42, 160-183, (1983) · Zbl 0538.73018
[20] Panagiotopoulos, P.D., A hemivariational inequality and substationary approach to the interface problem: theory and prospects of applications, Engng analysis, 1, 20-31, (1984)
[21] Panagiotopoulos, P.D., Inequality problems in mechanics and applications. convex and nonconvex energy functions, (1985), Birkhäuser Boston, Russian transl. MIR, publications, Moscow (1989). · Zbl 0579.73014
[22] Panagiotopoulos, P.D., Hemivariational inequalities and their applications, () · Zbl 0655.73010
[23] Panagiotopoulos, P.D., Nonconvex superpotentials and hemivariational inequalities. quasidifferentiability in mechanics, () · Zbl 0684.73007
[24] Panagiotopoulos, P.D., Inéquations hémivariationnelles semi-coercives dans la theorie des plaques de v. Kármán, C. r. acad. sci. Paris, 307, 735-738, (1988) · Zbl 0653.73011
[25] Panagiotopoulos, P.D., Variational hemivariational inequalities in nonlinear elasticity. the coercive case, Aplikace matem., 33, 249-268, (1988) · Zbl 0665.73020
[26] Panagiotopoulos P.D., Semicoercive hemivariational inequalities. On the delamination of composite plates, Q. appl. Math. (to appear). · Zbl 0693.73007
[27] Panagiotopoulos, P.D.; Koltsakis, E.K., Interlayer slip and delamination effect: a hemivariational inequality approach, Trans C.S.M.E., 11, 43-52, (1987) · Zbl 0657.73014
[28] Panagiotopoulos, P.D.; Stavroulakis, G., A variational-hemivariational inequality approach to the laminated plate theory under subdifferential boundary conditions, Q. appl. math., XLVI, 409-430, (1988) · Zbl 0672.73011
[29] Rauch, J., Discontinuous semilinear differential equations and multiple valued maps, Proc. am. math. soc., 64, 277-282, (1977) · Zbl 0413.35031
[30] Rockafellar, R.T., La théorie des sous-gradients et ses applications à l’optimization. fonctions convexes et non-convexes, (1979), Les Presses de l’Université de Montréal Montréal · Zbl 0421.90045
[31] Rockafellar, R.T., Generalized directional derivatives and subgradients of non-convex functions, Can. J. math., XXXII, 257-280, (1980) · Zbl 0447.49009
[32] Strodiot, J.J.; Nguyen, V.H., On the numerical treatment of the inclusion 0 ϵ ∂f(x), () · Zbl 0378.90087
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.