zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Contractibility and generalized convexity. (English) Zbl 0733.54011
The author defines various generalizations of convexity which are strong enough to give rise to selection theorems for set-valued mappings. He then applies these selection theorems to obtain fixed point results for set-valued mappings. A c-structure on the topological space Y is given by a mapping F from the non-empty finite subsets $<Y>$ into the non-empty contractible subsets of Y such that $\emptyset \ne A\subset B\in <Y>$ implies F(A)$\subset F(B)$. A set $Z\subset Y$ is called an F-set if F(A)$\subset Z$ whenever $A\in <Z>$. A c-structure (Y,F) is called an l.c. metric space if (Y,d) is a metric space and $\{$ $y\in Y\vert$ $d(y,E)<\epsilon \}$ is an F-set whenever $\epsilon >0$ and E is an F-set and if open balls are F-sets. Michael’s theorem, in this context, reads as follows: Let X be a paracompact space, (Y,F) an l.c. complete metric space, and let T be a lower semicontinuous mapping from X into the non- empty closed F-sets of Y. Then there is a continuous selection for T. The author then derives fixed point theorems and provides a wealth of examples.

54C60Set-valued maps (general topology)
54H25Fixed-point and coincidence theorems in topological spaces
47H10Fixed-point theorems for nonlinear operators on topological linear spaces
54C65Continuous selections
Full Text: DOI
[1] Alexandrov, P.: Combinatorial topology I. (1956)
[2] Bardaro, C.; Ceppitelli, R.: Some further generalizations of knaster-Kuratowski-mazurkiewicz theorem and minimax inequalities. J. math. Anal. appl. 132, 484-490 (1988) · Zbl 0667.49016
[3] Beckenbach, E. F.: Generalized convex functions. Bull. amer. Math. soc. 43, 363-371 (1937) · Zbl 0016.35202
[4] Ben El-Mechaïekh, H.; Deguire, P.; Granas, A.: Une alternative non linéaire en analyse convexe et applications. CR acad. Sci. Paris sér. I math. 294, 257-259 (1982)
[5] Ben El-Mechaïekh, H.; Deguire, P.; Granas, A.: Points fixes et coïncidences pour LES applications multivoques II (Applications de Ky Fan). CR acad. Sci. Paris sér. I math. 295, 337-340 (1982)
[6] Ben El-Mechaïekh, H.; Deguire, P.; Granas, A.: Points fixes et coïncidences pour LES applications multivoques II (Applications de type ${\Phi}$ et ${\Phi}$\ast). CR acad. Sci. Paris sér. I math. 295, 381-384 (1982)
[7] Ben Tal, A.: On generalized means and generalized convex functions. J. optim. Theory appl. 21, 1-13 (1977) · Zbl 0325.26007
[8] Berge, C.: Espaces topologiques, fonctions multivoques. (1959) · Zbl 0088.14703
[9] Bielawski, R.: Simplicial convexity and its applications. Math. anal. Appl. 127, 155-171 (1987) · Zbl 0638.52002
[10] Bressan, A.; Colombo, G.: Extensions and selections of maps with decomposable values. Studia math. 90 (1988) · Zbl 0677.54013
[11] Dugundji, J.; Granas, A.: 2nd ed. Fixed point theory. Fixed point theory 1 (1982)
[12] Fan, K.: A generalization of tychonoff’s fixed point theorem. Math. ann. 142, 305-310 (1961) · Zbl 0093.36701
[13] Fan, K.: A minimax inequality and applications. Inequalities III, 103-113 (1972) · Zbl 0302.49019
[14] Granas, A.: K. K. M. maps and their applications to non linear problems. The scottish book, 45-61 (1981)
[15] Granas, A.; Liu, F. C.: Coïncidences for set valued maps and minimax inequalities. J. math. Pures appl. 65, 119-148 (1986) · Zbl 0659.49007
[16] Guay, M. D.; Singh, K. L.; Whitfield, J. H. M: Fixed point theorems for non expansive mappings in convex metric spaces. Non linear analysis and applications, 179-187 (1982) · Zbl 0501.54030
[17] Horvath, C.: Some results on multivalued mappings and inequalities without convexity. Nonlinear analysis and convex analysis, 99-106 (1987)
[18] Klee, V. L.: On certain intersection properties for convex sets. Canad. J. Math. 3, 272-275 (1951) · Zbl 0042.40701
[19] Knaster, B.; Kuratowski, C.; Mazurkiewicz, S.: Ein beweis des fixpunktsatzes für n-dimensionale simplexe. Fund. math. 14, 132-137 (1929) · Zbl 55.0972.01
[20] Michael, E.: Continuous selections I. Ann. of math. 63, 361-382 (1956) · Zbl 0071.15902
[21] Takahashi, W.: A convexity in metric space and non expansive mappings I. Kôdai math. Sém. rep. 22, 142-149 (1970)
[22] Talman, A.: Fixed points for condensing multifunctions in metric spaces with convex structure. Kôdai math. Sém. rep. 29, 62-70 (1977) · Zbl 0423.54039