×

On the attitude stabilization of rigid spacecraft. (English) Zbl 0733.93051

Summary: While rigid body models for spacecraft with two controls are locally controllable and locally reachable for most actuator configurations, these systems cannot be locally asymptotically stabilized by smooth feedback, but using methods from a general nonlinear feedback design theory, feedback laws are derived which control the closed-loop trajectories to a revolute motion about an axis of rotation.

MSC:

93C95 Application models in control theory
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Aeyels, D., Stabilization of a class of nonlinear systems by a smooth feedback, Syst. control lett., 5, 289-294, (1985) · Zbl 0569.93056
[2] Brockett, R.W., Asymptotic stability and feedback stabilization, (), 181-191 · Zbl 0528.93051
[3] Brockett, R.W., Feedback invariants for nonlinear systems, (), 1115-1120 · Zbl 0457.93028
[4] Byrnes, C.; Isidori, A., A frequency domain philosophy for nonlinear systems, with application to stabilization and to adaptive control, (), 1569-1573
[5] Byrnes, C.; Isidori, A., Asymptotic expansions, root-loci and the global stability of nonlinear feedback systems, (), 159-179
[6] Byrnes, C.; Isidori, A., Global stabilization of nonlinear minimum phase systems, () · Zbl 0714.93021
[7] Byrnes, C.; Isidori, A., Heuristics for nonlinear control, (), 48-70
[8] Byrnes, C.; Isidori, A., Local stabilization of minimum phase systems, Syst. control lett., 11, 9-17, (1988) · Zbl 0649.93030
[9] Byrnes, C.; Isidori, A., New results and examples in nonlinear feedback stabilization, Syst. control lett., 12, 437-442, (1989) · Zbl 0684.93059
[10] Carr, J., ()
[11] Crouch, P.E., Spacecraft attitude control and stabilization: applications of geometric control to rigid body models, IEEE trans. aut. control, AC-29, 321-331, (1984) · Zbl 0536.93029
[12] Crouch, P.E., Attitude control of spacecraft, Mathematical control theory Banach center publications, 14, 121-134, (1985) · Zbl 0577.93034
[13] Crouch, P.E.; Irving, M., On sufficient conditions for local asymptotic stability of nonlinear systems whose linearization is uncontrollable, () · Zbl 0599.93006
[14] Griffiths, P.; Harris, J., ()
[15] Hermes, H., On a stabilizing feedback attitude control, SIAM J. control optimiz., 18, 352-361, (1980) · Zbl 0477.93046
[16] Hu, X., Stability of nonlinear feedback systems in the critical case, ()
[17] Hunt, L.R.; Su, R.; Meyer, G., Design for multi-input nonlinear systems, (), 268-298
[18] Jakubczyk, B.; Respondek, W., On linearization of control systems, Bull. acad. polonaise sci. ser. sci. math., 28, 517-522, (1980) · Zbl 0489.93023
[19] Krasnoselski, M.A.; Zabreiko, P.P., ()
[20] Marino, R., High gain feedback in nonlinear control systems, Int. J. control, 42, 1369-1385, (1985) · Zbl 0609.93029
[21] Milnor, J.W., Differential topology, () · Zbl 0123.16201
[22] Sommer, R., Control design for multivariable nonlinear time-varying systems, Int. J. control, 31, 883-891, (1980) · Zbl 0442.93014
[23] Sontag, E.D.; Sussmann, H.J., Remarks on continuous feedback, () · Zbl 0455.15009
[24] Utkin, V.I., ()
[25] Wilson, F.W., The structure of the level surfaces of a Lyapunov function, J. diff. eqns, 4, 323-329, (1967) · Zbl 0152.28701
[26] Young, K.-K.D.; Kokotovich, P.V.; Utkin, V.I., A singular perturbation problem of high gain feedback systems, IEEE trans. aut. control, AC-22, 931-937, (1977)
[27] Zabczyk, J., Some comments on stabilizability, Applied math. optimiz., 19, 1-9, (1989) · Zbl 0654.93054
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.