×

zbMATH — the first resource for mathematics

Self-consistent renormalization group approach to continuous phase transitions in alloys: application to ordering in \(\beta \)-brass. (English) Zbl 07330559
MSC:
82 Statistical mechanics, structure of matter
Software:
LSODE
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ducastelle F 1991 Order and Phase Stability in Alloys (Amsterdam: North-Holland) · Zbl 0962.82534
[2] Elliott R J, Krumhansl J A and Leath P L 1974 Rev. Mod. Phys.46 465-543
[3] Ziman J and Ziman P 1979 Models of Disorder: The Theoretical Physics of Homogeneously Disordered Systems (Cambridge: Cambridge University Press)
[4] Zunger A 1994 First-principles statistical mechanics of semiconductor alloys and intermetallic compounds Statics and Dynamics of Alloy Phase Transformations(NATO ASI Series B: Physics vol 319) ed P E A Turchi and A Gonis (New York: Plenum Press) pp 361-419
[5] Blum V and Zunger A 2004 Phys. Rev. B 70 055108
[6] Turchi P E A, Sluiter M, Pinski F J, Johnson D D, Nicholson D M, Stocks G M and Staunton J B 1991 Phys. Rev. Lett.67 1779-82
[7] Asato M, Takahashi H, Inagaki T, Fujima N, Tamura R and Hoshino T 2007 Mater. Trans.48 1711-6
[8] Olsson P, Klaver T P C and Domain C 2010 Phys. Rev. B 81 054102
[9] Tokar V I 1997 Comput. Mater. Sci.8 8-15
[10] Tan T L and Johnson D D 2011 Phys. Rev. B 83 144427
[11] Binder K 1986 Monte Carlo Methods in Statistical Physics(Topics in Current Physics vol 7) ed K Binder (Heidelberg: Springer) p 1 · Zbl 0593.65003
[12] Ferrenberg A M, Xu J and Landau D P 2018 Phys. Rev. E 97 043301
[13] Lundow P H, Markström K and Rosengren A 2009 Phil. Mag.89 2009-42
[14] Talapov A L and Blöte H W J 1996 J. Phys. A: Math. Gen.29 5727 · Zbl 0900.82010
[15] Madsen A, Als-Nielsen J, Hallmann J, Roth T and Lu W 2016 Phys. Rev. B 94 014111
[16] Tokar V I 1985 Phys. Lett. A 110 453-6
[17] Wilson K and Kogut J 1974 Phys. Rep.12 75-199
[18] Bervillier C 2013 Nucl. Phys. B 876 587 · Zbl 1284.81216
[19] Berges J, Tetradis N and Wetterich C 2002 Phys. Rep.363 223-386 · Zbl 0994.81077
[20] Caillol J-M 2012 Nucl. Phys. B 855 854-84 · Zbl 1229.81193
[21] Blöte H W J, Heringa J R and Luijten E 2002 Comput. Phys. Commun.147 58-63 · Zbl 1002.65003
[22] Tokar V I 1984 Phys. Lett. A 104 135-9
[23] Maier T, Jarrell M, Pruschke T and Hettler M H 2005 Rev. Mod. Phys.77 1027-80
[24] Fisher M E and Burford R J 1967 Phys. Rev.156 583-622
[25] Liu A J and Fisher M E 1989 Physica A 156 35-76
[26] Tokar V I 2019 Effective medium approach in the renormalization group theory of phase transitions (arXiv:1910.05123)
[27] Deng Y and Blöte H W J 2003 Phys. Rev. E 68 036125
[28] Tokar V I 2019 Calculation of non-universal thermodynamic quantities within self-consistent non-perturbative functional renormalization group approach (arXiv:1904.10338)
[29] Velický B, Kirkpatrick S and Ehrenreich H 1968 Phys. Rev.175 747-66
[30] Machado T and Dupuis N 2010 Phys. Rev. E 82 041128
[31] Zia R K P, Redish E F and McKay S R 2009 Am. J. Phys.77 614-22
[32] Morris T R 2005 J. High Energy Phys. JHEP07(2005)027
[33] Dietrich O W and Als-Nielsen J 1967 Phys. Rev.153 711-7
[34] Ron D, Brandt A and Swendsen R H 2017 Phys. Rev. E 95 053305
[35] Pelissetto A and Vicari E 2002 Phys. Rep.368 549-727 · Zbl 0997.82019
[36] Wegner F J 1972 Phys. Rev. B 5 4529-36
[37] Kissavos A E, Simak S I, Olsson P, Vitos L and Abrikosov I A 2006 Comput. Mater. Sci.35 1-5
[38] Kissavos A E, Shallcross S, Kaufman L, Grånäs O, Ruban A V and Abrikosov I A 2007 Phys. Rev. B 75 1550-235
[39] Tokar V I and Masanskiy I V 1987 Fiz. Met. Metalloved.64 1207-11
[40] Tokar V I 2016 Hybrid cluster + RG approach to the theory of phase transitions in strongly coupled Landau-Ginzburg-Wilson model (arXiv:1606.06987)
[41] Radhakrishnan K and Hindmarsh A C 1993 Description and use of LSODE, the Livermore solver for ordinary differential equations Technical Report UCRL-ID-113855 LLNL
[42] Jelitto R J 1969 J. Phys. Chem. Solids30 609-26
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.