×

zbMATH — the first resource for mathematics

Rectifiability of singular sets of noncollapsed limit spaces with Ricci curvature bounded below. (English) Zbl 07331714
Summary: This paper is concerned with the structure of Gromov-Hausdorff limit spaces \((M^n_i,g_i,p_i)\stackrel{d_{GH}}{\longrightarrow} (X^n,d,p)\) of Riemannian manifolds satisfying a uniform lower Ricci curvature bound \(\text{Ric}_{M^n_i}\geq -(n-1)\) as well as the noncollapsing assumption \(\text{Vol}(B_1(p_i))>\text{v}>0\). In such cases, there is a filtration of the singular set, \(S^0\subset S^1\cdots S^{n-1}:= S\), where \(S^k:= \{x\in X:\text{ no tangent cone at }x \text{ is }(k+1)\text{-symmetric}\}\). Equivalently, \(S^k\) is the set of points such that no tangent cone splits off a Euclidean factor \(\mathbb{R}^{k+1}\). It is classical from Cheeger-Colding that the Hausdorff dimension of \(S^k\) satisfies \(\dim S^k\leq k\) and \(S=S^{n-2}\), i.e., \(S^{n-1}\setminus S^{n-2}=\emptyset\). However, little else has been understood about the structure of the singular set \(S\).
Our first result for such limit spaces \(X^n\) states that \(S^k\) is \(k\)-rectifiable for all \(k\). In fact, we will show for \(\mathcal H^k\)-a.e. \(x\in S^k\) that every tangent cone \(X_x\) at \(x\) is \(k\)-symmetric, i.e., that \(X_x=\mathbb{R}^k\times C(Y)\) where \(C(Y)\) might depend on the particular \(X_x\). Here \(\mathcal{H}^k\) denotes the \(k\)-dimensional Hausdorff measure. As an application we show for all \(0<\epsilon<\epsilon(n,\text{v})\) there exists an \((n-2)\)-rectifiable closed set \(S^{n-2}_\epsilon\) with \(\mathcal{H}^{n-2}(S_{\epsilon}^{n-2})<C(n,\text{v},\epsilon)\), such that \(X^n\setminus S^{n-2}_\epsilon\) is \(\epsilon\)-bi-Hölder equivalent to a smooth Riemannian manifold. Moreover, \(S=\bigcup_\epsilon S^{n-2}_\epsilon\). As another application, we show that tangent cones are unique \(\mathcal H^{n-2} \)-a.e.
In the case of limit spaces \(X^n\) satisfying a \(2\)-sided Ricci curvature bound \(|\text{Ric}_{M^n_i}|\leq n-1\), we can use these structural results to give a new proof of a conjecture from Cheeger-Colding stating that \(S\) is \((n-4)\)-rectifiable with uniformly bounded measure. We can also conclude from this structure that tangent cones are unique \(\mathcal H^{n-4}\)-a.e.
Our analysis builds on the notion of quantitative stratification introduced by Cheeger-Naber, and the neck region analysis developed by Jiang-Naber-Valtorta. Several new ideas and new estimates are required, including a sharp cone-splitting theorem and a geometric transformation theorem, which will allow us to control the degeneration of harmonic functions on these neck regions.
MSC:
53C23 Global geometric and topological methods (à la Gromov); differential geometric analysis on metric spaces
58A35 Stratified sets
35A21 Singularity in context of PDEs
PDF BibTeX XML Cite
Full Text: Link
References:
[1] Cheeger, Jeff; Yau, Shing Tung, A lower bound for the heat kernel, Comm. Pure Appl. Math.. Communications on Pure and Applied Mathematics, 34, 465-480 (1981) · Zbl 0481.35003
[2] Ambrosio, Luigi; Gigli, Nicola; Savar\'e, Giuseppe, Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below, Invent. Math.. Inventiones Mathematicae, 195, 289-391 (2014) · Zbl 1312.53056
[3] Ambrosio, Luigi; Gigli, Nicola; Savar\'e, Giuseppe, Metric measure spaces with Riemannian Ricci curvature bounded from below, Duke Math. J.. Duke Mathematical Journal, 163, 1405-1490 (2014) · Zbl 1304.35310
[4] Ambrosio, Luigi; Honda, Shouhei, Local spectral convergence in \({\rm RCD}^*(K,N)\) spaces, Nonlinear Anal.. Nonlinear Analysis. Theory, Methods & Applications. An International Multidisciplinary Journal, 177, 1-23 (2018) · Zbl 1402.53034
[5] Ambrosio, Luigi; Honda, Shouhei; Tewodrose, David, Short-time behavior of the heat kernel and Weyl’s law on \({\rm RCD}^*(K,N)\) spaces, Ann. Global Anal. Geom.. Annals of Global Analysis and Geometry, 53, 97-119 (2018) · Zbl 1390.58015
[6] Anderson, Michael T.; Cheeger, Jeff, Diffeomorphism finiteness for manifolds with Ricci curvature and \(L^{n/2}\)-norm of curvature bounded, Geom. Funct. Anal.. Geometric and Functional Analysis, 1, 231-252 (1991) · Zbl 0764.53026
[7] Bacher, Kathrin; Sturm, Karl-Theodor, Ricci bounds for Euclidean and spherical cones. Singular Phenomena and Scaling in Mathematical Models, 3-23 (2014) · Zbl 1328.53050
[8] Bando, Shigetoshi, Bubbling out of Einstein manifolds, Tohoku Math. J. (2). The Tohoku Mathematical Journal. Second Series, 42, 205-216 (1990) · Zbl 0719.53025
[9] Breiner, Christine; Lamm, Tobias, Quantitative stratification and higher regularity for biharmonic maps, Manuscripta Math.. Manuscripta Mathematica, 148, 379-398 (2015) · Zbl 1327.53079
[10] Buser, Peter, A note on the isoperimetric constant, Ann. Sci. \'Ecole Norm. Sup. (4). Annales Scientifiques de l’\'Ecole Normale Sup\'erieure. Quatri\`eme S\'erie, 15, 213-230 (1982) · Zbl 0501.53030
[11] Cheeger, Jeff, On the spectral geometry of spaces with cone-like singularities, Proc. Nat. Acad. Sci. U.S.A.. Proceedings of the National Academy of Sciences of the United States of America, 76, 2103-2106 (1979) · Zbl 0411.58003
[12] Cheeger, Jeff, Spectral geometry of singular Riemannian spaces, J. Differential Geom.. Journal of Differential Geometry, 18, 575-657 (1983) · Zbl 0529.58034
[13] Cheeger, Jeff, Degeneration of Riemannian Metrics Under Ricci Curvature Bounds, Lezioni Fermiane. [Fermi Lectures], ii+77 pp. (2001) · Zbl 1055.53024
[14] Cheeger, Jeff, Integral bounds on curvature elliptic estimates and rectifiability of singular sets, Geom. Funct. Anal.. Geometric and Functional Analysis, 13, 20-72 (2003) · Zbl 1086.53051
[15] Cheeger, Jeff, Differentiability of Lipschitz functions on metric measure spaces, Geom. Funct. Anal.. Geometric and Functional Analysis, 9, 428-517 (1999) · Zbl 0942.58018
[16] Cheeger, Jeff; Colding, Tobias H., Lower bounds on Ricci curvature and the almost rigidity of warped products, Ann. of Math. (2). Annals of Mathematics. Second Series, 144, 189-237 (1996) · Zbl 0865.53037
[17] Cheeger, Jeff; Colding, Tobias H., On the structure of spaces with Ricci curvature bounded below. I, J. Differential Geom.. Journal of Differential Geometry, 46, 406-480 (1997) · Zbl 0902.53034
[18] Cheeger, Jeff; Colding, Tobias H., On the structure of spaces with Ricci curvature bounded below. III, J. Differential Geom.. Journal of Differential Geometry, 54, 37-74 (2000) · Zbl 1027.53043
[19] Cheeger, Jeff; Colding, Tobias H.; Tian, G., On the singularities of spaces with bounded Ricci curvature, Geom. Funct. Anal.. Geometric and Functional Analysis, 12, 873-914 (2002) · Zbl 1030.53046
[20] Cheeger, Jeff; Haslhofer, Robert; Naber, Aaron, Quantitative stratification and the regularity of mean curvature flow, Geom. Funct. Anal.. Geometric and Functional Analysis, 23, 828-847 (2013) · Zbl 1277.53064
[21] Cheeger, Jeff; Haslhofer, Robert; Naber, Aaron, Quantitative stratification and the regularity of harmonic map flow, Calc. Var. Partial Differential Equations. Calculus of Variations and Partial Differential Equations, 53, 365-381 (2015) · Zbl 1317.53081
[22] Cheeger, Jeff; Naber, Aaron, Lower bounds on Ricci curvature and quantitative behavior of singular sets, Invent. Math.. Inventiones Mathematicae, 191, 321-339 (2013) · Zbl 1268.53053
[23] Cheeger, Jeff; Naber, Aaron, Quantitative stratification and the regularity of harmonic maps and minimal currents, Comm. Pure Appl. Math.. Communications on Pure and Applied Mathematics, 66, 965-990 (2013) · Zbl 1269.53063
[24] Cheeger, Jeff; Naber, Aaron, Regularity of Einstein manifolds and the codimension 4 conjecture, Ann. of Math. (2). Annals of Mathematics. Second Series, 182, 1093-1165 (2015) · Zbl 1335.53057
[25] Cheeger, Jeff; Naber, Aaron; Valtorta, Daniele, Critical sets of elliptic equations, Comm. Pure Appl. Math.. Communications on Pure and Applied Mathematics, 68, 173-209 (2015) · Zbl 1309.35012
[26] Chu, J., Quantitative stratification of \(F\)-subharmonic functions (2016)
[27] Colding, Tobias H., Ricci curvature and volume convergence, Ann. of Math. (2). Annals of Mathematics. Second Series, 145, 477-501 (1997) · Zbl 0879.53030
[28] Colding, Tobias Holck; Naber, Aaron, Sharp H\"older continuity of tangent cones for spaces with a lower Ricci curvature bound and applications, Ann. of Math. (2). Annals of Mathematics. Second Series, 176, 1173-1229 (2012) · Zbl 1260.53067
[29] Colding, Tobias Holck; Naber, Aaron, Characterization of tangent cones of noncollapsed limits with lower Ricci bounds and applications, Geom. Funct. Anal.. Geometric and Functional Analysis, 23, 134-148 (2013) · Zbl 1271.53042
[30] Ding, Yu, Heat kernels and Green’s functions on limit spaces, Comm. Anal. Geom.. Communications in Analysis and Geometry, 10, 475-514 (2002) · Zbl 1018.58013
[31] Ding, Yu, An existence theorem of harmonic functions with polynomial growth, Proc. Amer. Math. Soc.. Proceedings of the American Mathematical Society, 132, 543-551 (2004) · Zbl 1046.53023
[32] Donaldson, Simon; Sun, Song, Gromov-Hausdorff limits of K\"ahler manifolds and algebraic geometry, Acta Math.. Acta Mathematica, 213, 63-106 (2014) · Zbl 1318.53037
[33] Edelen, Nick; Engelstein, Max, Quantitative stratification for some free-boundary problems, Trans. Amer. Math. Soc.. Transactions of the American Mathematical Society, 371, 2043-2072 (2019) · Zbl 1404.35489
[34] Erbar, Matthias; Kuwada, Kazumasa; Sturm, Karl-Theodor, On the equivalence of the entropic curvature-dimension condition and Bochner’s inequality on metric measure spaces, Invent. Math.. Inventiones Mathematicae, 201, 993-1071 (2015) · Zbl 1329.53059
[35] Federer, Herbert, Geometric Measure Theory, Grundlehren Math. Wiss., 153, xiv+676 pp. (1969) · Zbl 0176.00801
[36] Gigli, Nicola; Mondino, Andrea; Savar\'e, Giuseppe, Convergence of pointed non-compact metric measure spaces and stability of Ricci curvature bounds and heat flows, Proc. Lond. Math. Soc. (3). Proceedings of the London Mathematical Society. Third Series, 111, 1071-1129 (2015) · Zbl 1398.53044
[37] Golub, Gene H.; Van Loan, Charles F., Matrix Computations, Johns Hopkins Stud. Math. Sci., xxx+698 pp. (1996) · Zbl 0865.65009
[38] Haj\lasz, Piotr; Koskela, Pekka, Sobolev meets Poincar\'e, C. R. Acad. Sci. Paris S\'er. I Math.. Comptes Rendus de l’Acad\'emie des Sciences. S\'erie I. Math\'ematique, 320, 1211-1215 (1995) · Zbl 0837.46024
[39] Hamilton, Richard S., A matrix Harnack estimate for the heat equation, Comm. Anal. Geom.. Communications in Analysis and Geometry, 1, 113-126 (1993) · Zbl 0799.53048
[40] Jiang, Wenshuai; Naber, Aaron, \(L^2\) curvature bounds on manifolds with bounded Ricci curvature, Ann. of Math. (2). Annals of Mathematics. Second Series, 193, 107-222 (2021) · Zbl 07310599
[41] Jerison, David, The Poincar\'e inequality for vector fields satisfying H\"ormander’s condition, Duke Math. J.. Duke Mathematical Journal, 53, 503-523 (1986) · Zbl 0614.35066
[42] Ketterer, Christian, Cones over metric measure spaces and the maximal diameter theorem, J. Math. Pures Appl. (9). Journal de Math\'ematiques Pures et Appliqu\'ees. Neuvi\`eme S\'erie, 103, 1228-1275 (2015) · Zbl 1317.53064
[43] Kotschwar, Brett L., Hamilton’s gradient estimate for the heat kernel on complete manifolds, Proc. Amer. Math. Soc.. Proceedings of the American Mathematical Society, 135, 3013-3019 (2007) · Zbl 1127.58021
[44] Li, Nan; Naber, Aaron, Quantitative estimates on the singular sets of Alexandrov spaces, Peking Math. J.. Peking Mathematical Journal, 3, 203-234 (2020) · Zbl 07290709
[45] Li, Peter; Yau, Shing-Tung, On the parabolic kernel of the Schr\"odinger operator, Acta Math.. Acta Mathematica, 156, 153-201 (1986) · Zbl 0611.58045
[46] Mondino, Andrea; Naber, Aaron, Structure theory of metric measure spaces with lower Ricci curvature bounds, J. Eur. Math. Soc. (JEMS). Journal of the European Mathematical Society (JEMS), 21, 1809-1854 (2019) · Zbl 07060417
[47] Naber, Aaron, The geometry of Ricci curvature. Proceedings of the International Congress of Mathematicians—Seoul 2014. Vol. II, 911-937 (2014) · Zbl 1376.53003
[48] Naber, Aaron; Valtorta, Daniele, Volume estimates on the critical sets of solutions to elliptic PDEs, Comm. Pure Appl. Math.. Communications on Pure and Applied Mathematics, 70, 1835-1897 (2017) · Zbl 1376.35021
[49] Naber, Aaron; Valtorta, Daniele, Energy identity for stationary Yang Mills, Invent. Math.. Inventiones Mathematicae, 216, 847-925 (2019) · Zbl 07066470
[50] Naber, Aaron; Valtorta, Daniele, Rectifiable-Reifenberg and the regularity of stationary and minimizing harmonic maps, Ann. of Math. (2). Annals of Mathematics. Second Series, 185, 131-227 (2017) · Zbl 1393.58009
[51] Ni, Lei, The entropy formula for linear heat equation, J. Geom. Anal.. The Journal of Geometric Analysis, 14, 87-100 (2004) · Zbl 1044.58030
[52] Petersen, Peter, Riemannian Geometry, Graduate Texts in Math., 171, xviii+499 pp. (2016) · Zbl 1417.53001
[53] Schoen, R.; Yau, S.-T., Lectures on Differential Geometry, Conference Proceedings and Lecture Notes in Geometry and Topology, I, v+235 pp. (1994) · Zbl 0830.53001
[54] Simon, Leon, Lectures on Geometric Measure Theory, Proc. Centre for Mathematical Analysis, Australian National Univ., 3, vii+272 pp. (1983) · Zbl 0546.49019
[55] Souplet, Philippe; Zhang, Qi S., Sharp gradient estimate and Yau’s Liouville theorem for the heat equation on noncompact manifolds, Bull. London Math. Soc.. The Bulletin of the London Mathematical Society, 38, 1045-1053 (2006) · Zbl 1109.58025
[56] Tian, Gang, Partial \(C^0\)-estimate for K\"ahler-Einstein metrics, Commun. Math. Stat.. Communications in Mathematics and Statistics, 1, 105-113 (2013) · Zbl 1280.32014
[57] Wang, Y., Quantitative stratification of stationary Yang-Mills fields (2016)
[58] Zhang, Hui-Chun; Zhu, Xi-Ping, Weyl’s law on \(RCD^*(K,N)\) metric measure spaces, Comm. Anal. Geom.. Communications in Analysis and Geometry, 27, 1869-1914 (2019) · Zbl 07157609
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.