## Rectifiability of singular sets of noncollapsed limit spaces with Ricci curvature bounded below.(English)Zbl 1469.53083

Authors’ abstract: This paper is concerned with the structure of Gromov-Hausdorff limit spaces $$(M^n_i,g_i,p_i)\stackrel{d_{GH}}{\longrightarrow} (X^n,d,p)$$ of Riemannian manifolds satisfying a uniform lower Ricci curvature bound $$\text{Ric}_{M^n_i}\geq -(n-1)$$ as well as the noncollapsing assumption $$\text{Vol}(B_1(p_i))>\text{v}>0$$. In such cases, there is a filtration of the singular set, $$S^0\subset S^1\cdots S^{n-1}:= S$$, where $$S^k:= \{x\in X:\text{ no tangent cone at }x \text{ is }(k+1)\text{-symmetric}\}$$. Equivalently, $$S^k$$ is the set of points such that no tangent cone splits off a Euclidean factor $$\mathbb{R}^{k+1}$$. It is classical from Cheeger-Colding that the Hausdorff dimension of $$S^k$$ satisfies $$\dim S^k\leq k$$ and $$S=S^{n-2}$$, i.e., $$S^{n-1}\setminus S^{n-2}=\emptyset$$. However, little else has been understood about the structure of the singular set $$S$$.
Our first result for such limit spaces $$X^n$$ states that $$S^k$$ is $$k$$-rectifiable for all $$k$$. In fact, we will show for $$\mathcal H^k$$-a.e. $$x\in S^k$$ that every tangent cone $$X_x$$ at $$x$$ is $$k$$-symmetric, i.e., that $$X_x=\mathbb{R}^k\times C(Y)$$ where $$C(Y)$$ might depend on the particular $$X_x$$. Here $$\mathcal{H}^k$$ denotes the $$k$$-dimensional Hausdorff measure. As an application we show for all $$0<\epsilon<\epsilon(n,\text{v})$$ there exists an $$(n-2)$$-rectifiable closed set $$S^{n-2}_\epsilon$$ with $$\mathcal{H}^{n-2}(S_{\epsilon}^{n-2})<C(n,\text{v},\epsilon)$$, such that $$X^n\setminus S^{n-2}_\epsilon$$ is $$\epsilon$$-bi-Hölder equivalent to a smooth Riemannian manifold. Moreover, $$S=\bigcup_\epsilon S^{n-2}_\epsilon$$. As another application, we show that tangent cones are unique $$\mathcal H^{n-2}$$-a.e.
In the case of limit spaces $$X^n$$ satisfying a $$2$$-sided Ricci curvature bound $$|\text{Ric}_{M^n_i}|\leq n-1$$, we can use these structural results to give a new proof of a conjecture from Cheeger-Colding stating that $$S$$ is $$(n-4)$$-rectifiable with uniformly bounded measure. We can also conclude from this structure that tangent cones are unique $$\mathcal H^{n-4}$$-a.e.
Our analysis builds on the notion of quantitative stratification introduced by Cheeger-Naber, and the neck region analysis developed by Jiang-Naber-Valtorta. Several new ideas and new estimates are required, including a sharp cone-splitting theorem and a geometric transformation theorem, which will allow us to control the degeneration of harmonic functions on these neck regions.

### MSC:

 53C23 Global geometric and topological methods (à la Gromov); differential geometric analysis on metric spaces 58A35 Stratified sets 35A21 Singularity in context of PDEs

### Keywords:

Ricci; curvature; stratification; rectifiability; Hausdorff dimension
Full Text:

### References:

 [1] Cheeger, Jeff; Yau, Shing Tung, A lower bound for the heat kernel, Comm. Pure Appl. Math.. Communications on Pure and Applied Mathematics, 34, 465-480 (1981) · Zbl 0481.35003 · doi:10.1002/cpa.3160340404 [2] Ambrosio, Luigi; Gigli, Nicola; Savar\'{e}, Giuseppe, Calculus and heat flow in metric measure spaces and applications to spaces with {R}icci bounds from below, Invent. Math.. Inventiones Mathematicae, 195, 289-391 (2014) · Zbl 1312.53056 · doi:10.1007/s00222-013-0456-1 [3] Ambrosio, Luigi; Gigli, Nicola; Savar\'{e}, Giuseppe, Metric measure spaces with {R}iemannian {R}icci curvature bounded from below, Duke Math. J.. Duke Mathematical Journal, 163, 1405-1490 (2014) · Zbl 1304.35310 · doi:10.1215/00127094-2681605 [4] Ambrosio, Luigi; Honda, Shouhei, Local spectral convergence in {$${\rm RCD}^*(K,N)$$} spaces, Nonlinear Anal.. Nonlinear Analysis. Theory, Methods & Applications. An International Multidisciplinary Journal, 177, 1-23 (2018) · Zbl 1402.53034 · doi:10.1016/j.na.2017.04.003 [5] Ambrosio, Luigi; Honda, Shouhei; Tewodrose, David, Short-time behavior of the heat kernel and {W}eyl’s law on {$${\rm RCD}^*(K,N)$$} spaces, Ann. Global Anal. Geom.. Annals of Global Analysis and Geometry, 53, 97-119 (2018) · Zbl 1390.58015 · doi:10.1007/s10455-017-9569-x [6] Anderson, Michael T.; Cheeger, Jeff, Diffeomorphism finiteness for manifolds with {R}icci curvature and {$$L^{n/2}$$}-norm of curvature bounded, Geom. Funct. Anal.. Geometric and Functional Analysis, 1, 231-252 (1991) · Zbl 0764.53026 · doi:10.1007/BF01896203 [7] Bacher, Kathrin; Sturm, Karl-Theodor, Ricci bounds for {E}uclidean and spherical cones. Singular Phenomena and Scaling in Mathematical Models, 3-23 (2014) · Zbl 1328.53050 · doi:10.1007/978-3-319-00786-1_1 [8] Bando, Shigetoshi, {B}ubbling out of {E}instein manifolds, Tohoku Math. J. (2). The Tohoku Mathematical Journal. Second Series, 42, 205-216 (1990) · Zbl 0719.53025 · doi:10.2748/tmj/1178227654 [9] Breiner, Christine; Lamm, Tobias, Quantitative stratification and higher regularity for biharmonic maps, Manuscripta Math.. Manuscripta Mathematica, 148, 379-398 (2015) · Zbl 1327.53079 · doi:10.1007/s00229-015-0750-x [10] Buser, Peter, A note on the isoperimetric constant, Ann. Sci. \'{E}cole Norm. Sup. (4). Annales Scientifiques de l’\'{E}cole Normale Sup\'{e}rieure. Quatri\eme S\'{e}rie, 15, 213-230 (1982) · Zbl 0501.53030 · doi:10.24033/asens.1426 [11] Cheeger, Jeff, On the spectral geometry of spaces with cone-like singularities, Proc. Nat. Acad. Sci. U.S.A.. Proceedings of the National Academy of Sciences of the United States of America, 76, 2103-2106 (1979) · Zbl 0411.58003 · doi:10.1073/pnas.76.5.2103 [12] Cheeger, Jeff, Spectral geometry of singular {R}iemannian spaces, J. Differential Geom.. Journal of Differential Geometry, 18, 575-657 (1983) · Zbl 0529.58034 · doi:10.4310/jdg/1214438175 [13] Cheeger, Jeff, Degeneration of {R}iemannian Metrics Under {R}icci Curvature Bounds, Lezioni Fermiane. [Fermi Lectures], ii+77 pp. (2001) · Zbl 1055.53024 [14] Cheeger, Jeff, Integral bounds on curvature elliptic estimates and rectifiability of singular sets, Geom. Funct. Anal.. Geometric and Functional Analysis, 13, 20-72 (2003) · Zbl 1086.53051 · doi:10.1007/s000390300001 [15] Cheeger, Jeff, Differentiability of {L}ipschitz functions on metric measure spaces, Geom. Funct. Anal.. Geometric and Functional Analysis, 9, 428-517 (1999) · Zbl 0942.58018 · doi:10.1007/s000390050094 [16] Cheeger, Jeff; Colding, Tobias H., Lower bounds on {R}icci curvature and the almost rigidity of warped products, Ann. of Math. (2). Annals of Mathematics. Second Series, 144, 189-237 (1996) · Zbl 0865.53037 · doi:10.2307/2118589 [17] Cheeger, Jeff; Colding, Tobias H., On the structure of spaces with {R}icci curvature bounded below. {I}, J. Differential Geom.. Journal of Differential Geometry, 46, 406-480 (1997) · Zbl 0902.53034 · doi:10.4310/jdg/1214459974 [18] Cheeger, Jeff; Colding, Tobias H., On the structure of spaces with {R}icci curvature bounded below. {III}, J. Differential Geom.. Journal of Differential Geometry, 54, 37-74 (2000) · Zbl 1027.53043 · doi:10.4310/jdg/1214342146 [19] Cheeger, Jeff; Colding, Tobias H.; Tian, G., On the singularities of spaces with bounded {R}icci curvature, Geom. Funct. Anal.. Geometric and Functional Analysis, 12, 873-914 (2002) · Zbl 1030.53046 · doi:10.1007/PL00012649 [20] Cheeger, Jeff; Haslhofer, Robert; Naber, Aaron, Quantitative stratification and the regularity of mean curvature flow, Geom. Funct. Anal.. Geometric and Functional Analysis, 23, 828-847 (2013) · Zbl 1277.53064 · doi:10.1007/s00039-013-0224-9 [21] Cheeger, Jeff; Haslhofer, Robert; Naber, Aaron, Quantitative stratification and the regularity of harmonic map flow, Calc. Var. Partial Differential Equations. Calculus of Variations and Partial Differential Equations, 53, 365-381 (2015) · Zbl 1317.53081 · doi:10.1007/s00526-014-0752-7 [22] Cheeger, Jeff; Naber, Aaron, Lower bounds on {R}icci curvature and quantitative behavior of singular sets, Invent. Math.. Inventiones Mathematicae, 191, 321-339 (2013) · Zbl 1268.53053 · doi:10.1007/s00222-012-0394-3 [23] Cheeger, Jeff; Naber, Aaron, Quantitative stratification and the regularity of harmonic maps and minimal currents, Comm. Pure Appl. Math.. Communications on Pure and Applied Mathematics, 66, 965-990 (2013) · Zbl 1269.53063 · doi:10.1002/cpa.21446 [24] Cheeger, Jeff; Naber, Aaron, Regularity of {E}instein manifolds and the codimension 4 conjecture, Ann. of Math. (2). Annals of Mathematics. Second Series, 182, 1093-1165 (2015) · Zbl 1335.53057 · doi:10.4007/annals.2015.182.3.5 [25] Cheeger, Jeff; Naber, Aaron; Valtorta, Daniele, Critical sets of elliptic equations, Comm. Pure Appl. Math.. Communications on Pure and Applied Mathematics, 68, 173-209 (2015) · Zbl 1309.35012 · doi:10.1002/cpa.21518 [26] Chu, J., Quantitative stratification of {$$F$$}-subharmonic functions (2016) [27] Colding, Tobias H., Ricci curvature and volume convergence, Ann. of Math. (2). Annals of Mathematics. Second Series, 145, 477-501 (1997) · Zbl 0879.53030 · doi:10.2307/2951841 [28] Colding, Tobias Holck; Naber, Aaron, Sharp {H}\"{o}lder continuity of tangent cones for spaces with a lower {R}icci curvature bound and applications, Ann. of Math. (2). Annals of Mathematics. Second Series, 176, 1173-1229 (2012) · Zbl 1260.53067 · doi:10.4007/annals.2012.176.2.10 [29] Colding, Tobias Holck; Naber, Aaron, Characterization of tangent cones of noncollapsed limits with lower {R}icci bounds and applications, Geom. Funct. Anal.. Geometric and Functional Analysis, 23, 134-148 (2013) · Zbl 1271.53042 · doi:10.1007/s00039-012-0202-7 [30] Ding, Yu, Heat kernels and {G}reen’s functions on limit spaces, Comm. Anal. Geom.. Communications in Analysis and Geometry, 10, 475-514 (2002) · Zbl 1018.58013 · doi:10.4310/CAG.2002.v10.n3.a3 [31] Ding, Yu, An existence theorem of harmonic functions with polynomial growth, Proc. Amer. Math. Soc.. Proceedings of the American Mathematical Society, 132, 543-551 (2004) · Zbl 1046.53023 · doi:10.1090/S0002-9939-03-07060-6 [32] Donaldson, Simon; Sun, Song, Gromov-{H}ausdorff limits of {K}\"{a}hler manifolds and algebraic geometry, Acta Math.. Acta Mathematica, 213, 63-106 (2014) · Zbl 1318.53037 · doi:10.1007/s11511-014-0116-3 [33] Edelen, Nick; Engelstein, Max, Quantitative stratification for some free-boundary problems, Trans. Amer. Math. Soc.. Transactions of the American Mathematical Society, 371, 2043-2072 (2019) · Zbl 1404.35489 · doi:10.1090/tran/7401 [34] Erbar, Matthias; Kuwada, Kazumasa; Sturm, Karl-Theodor, On the equivalence of the entropic curvature-dimension condition and {B}ochner’s inequality on metric measure spaces, Invent. Math.. Inventiones Mathematicae, 201, 993-1071 (2015) · Zbl 1329.53059 · doi:10.1007/s00222-014-0563-7 [35] Federer, Herbert, Geometric Measure Theory, Grundlehren Math. Wiss., 153, xiv+676 pp. (1969) · Zbl 0176.00801 [36] Gigli, Nicola; Mondino, Andrea; Savar\'{e}, Giuseppe, Convergence of pointed non-compact metric measure spaces and stability of {R}icci curvature bounds and heat flows, Proc. Lond. Math. Soc. (3). Proceedings of the London Mathematical Society. Third Series, 111, 1071-1129 (2015) · Zbl 1398.53044 · doi:10.1112/plms/pdv047 [37] Golub, Gene H.; Van Loan, Charles F., Matrix Computations, Johns Hopkins Stud. Math. Sci., xxx+698 pp. (1996) · Zbl 0865.65009 [38] Haj\l{a}sz, Piotr; Koskela, Pekka, Sobolev meets {P}oincar\'{e}, C. R. Acad. Sci. Paris S\'{e}r. I Math.. Comptes Rendus de l’Acad\'{e}mie des Sciences. S\'{e}rie I. Math\'{e}matique, 320, 1211-1215 (1995) · Zbl 0837.46024 [39] Hamilton, Richard S., A matrix {H}arnack estimate for the heat equation, Comm. Anal. Geom.. Communications in Analysis and Geometry, 1, 113-126 (1993) · Zbl 0799.53048 · doi:10.4310/CAG.1993.v1.n1.a6 [40] Jiang, Wenshuai; Naber, Aaron, {$$L^2$$} curvature bounds on manifolds with bounded {R}icci curvature, Ann. of Math. (2). Annals of Mathematics. Second Series, 193, 107-222 (2021) · Zbl 1461.53009 · doi:10.4007/annals.2021.193.1.2 [41] Jerison, David, The {P}oincar\'{e} inequality for vector fields satisfying {H}\"{o}rmander’s condition, Duke Math. J.. Duke Mathematical Journal, 53, 503-523 (1986) · Zbl 0614.35066 · doi:10.1215/S0012-7094-86-05329-9 [42] Ketterer, Christian, Cones over metric measure spaces and the maximal diameter theorem, J. Math. Pures Appl. (9). Journal de Math\'{e}matiques Pures et Appliqu\'{e}es. Neuvi\eme S\'{e}rie, 103, 1228-1275 (2015) · Zbl 1317.53064 · doi:10.1016/j.matpur.2014.10.011 [43] Kotschwar, Brett L., Hamilton’s gradient estimate for the heat kernel on complete manifolds, Proc. Amer. Math. Soc.. Proceedings of the American Mathematical Society, 135, 3013-3019 (2007) · Zbl 1127.58021 · doi:10.1090/S0002-9939-07-08837-5 [44] Li, Nan; Naber, Aaron, Quantitative estimates on the singular sets of {A}lexandrov spaces, Peking Math. J.. Peking Mathematical Journal, 3, 203-234 (2020) · Zbl 1480.53059 · doi:10.1007/s42543-020-00026-2 [45] Li, Peter; Yau, Shing-Tung, On the parabolic kernel of the {S}chr\"{o}dinger operator, Acta Math.. Acta Mathematica, 156, 153-201 (1986) · Zbl 0611.58045 · doi:10.1007/BF02399203 [46] Mondino, Andrea; Naber, Aaron, Structure theory of metric measure spaces with lower {R}icci curvature bounds, J. Eur. Math. Soc. (JEMS). Journal of the European Mathematical Society (JEMS), 21, 1809-1854 (2019) · Zbl 1468.53039 · doi:10.4171/JEMS/874 [47] Naber, Aaron, The geometry of {R}icci curvature. Proceedings of the {I}nternational {C}ongress of {M}athematicians—{S}eoul 2014. {V}ol. {II}, 911-937 (2014) · Zbl 1376.53003 [48] Naber, Aaron; Valtorta, Daniele, Volume estimates on the critical sets of solutions to elliptic {PDE}s, Comm. Pure Appl. Math.. Communications on Pure and Applied Mathematics, 70, 1835-1897 (2017) · Zbl 1376.35021 · doi:10.1002/cpa.21708 [49] Naber, Aaron; Valtorta, Daniele, Energy identity for stationary {Y}ang {M}ills, Invent. Math.. Inventiones Mathematicae, 216, 847-925 (2019) · Zbl 1478.53038 · doi:10.1007/s00222-019-00854-9 [50] Naber, Aaron; Valtorta, Daniele, Rectifiable-{R}eifenberg and the regularity of stationary and minimizing harmonic maps, Ann. of Math. (2). Annals of Mathematics. Second Series, 185, 131-227 (2017) · Zbl 1393.58009 · doi:10.4007/annals.2017.185.1.3 [51] Ni, Lei, The entropy formula for linear heat equation, J. Geom. Anal.. The Journal of Geometric Analysis, 14, 87-100 (2004) · Zbl 1044.58030 · doi:10.1007/BF02921867 [52] Petersen, Peter, Riemannian Geometry, Graduate Texts in Math., 171, xviii+499 pp. (2016) · Zbl 1417.53001 · doi:10.1007/978-3-319-26654-1 [53] Schoen, R.; Yau, S.-T., Lectures on Differential Geometry, Conference Proceedings and Lecture Notes in Geometry and Topology, I, v+235 pp. (1994) · Zbl 0830.53001 [54] Simon, Leon, Lectures on Geometric Measure Theory, Proc. Centre for Mathematical Analysis, Australian National Univ., 3, vii+272 pp. (1983) · Zbl 0546.49019 [55] Souplet, Philippe; Zhang, Qi S., Sharp gradient estimate and {Y}au’s {L}iouville theorem for the heat equation on noncompact manifolds, Bull. London Math. Soc.. The Bulletin of the London Mathematical Society, 38, 1045-1053 (2006) · Zbl 1109.58025 · doi:10.1112/S0024609306018947 [56] Tian, Gang, Partial {$$C^0$$}-estimate for {K}\"{a}hler-{E}instein metrics, Commun. Math. Stat.. Communications in Mathematics and Statistics, 1, 105-113 (2013) · Zbl 1280.32014 · doi:10.1007/s40304-013-0011-9 [57] Wang, Y., Quantitative stratification of stationary {Y}ang-{M}ills fields (2016) [58] Zhang, Hui-Chun; Zhu, Xi-Ping, Weyl’s law on {$$RCD^*(K,N)$$} metric measure spaces, Comm. Anal. Geom.. Communications in Analysis and Geometry, 27, 1869-1914 (2019) · Zbl 1464.53052 · doi:10.4310/CAG.2019.v27.n8.a8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.