# zbMATH — the first resource for mathematics

The spread of a finite group. (English) Zbl 07331717
Let $$G$$ be a finite group, then
(1) the spread $$s(G)$$ of $$G$$ is the largest integer $$k$$ such that for any nontrivial elements $$x_1, \ldots, x_k \in G$$, there exists $$y \in G$$ with $$G = \langle x_i, y \rangle$$ for all $$i$$;
(2) the uniform spread $$u(G)$$ of $$G$$ is the largest integer $$k$$ such that there is a conjugacy class $$\mathcal{C}$$ of $$G$$ with the property that for any nontrivial elements $$x_1, \ldots, x_k \in G$$, there exists $$y \in \mathcal{C}$$ with $$G = \langle x_i, y \rangle$$ for all $$i$$.
A group $$G$$ is $$\frac{3}{2}$$-generated if every nontrivial element belongs to a generating pair, which is equivalent to the condition $$s(G) \geq 1$$.
The notion of spread was first introduced in the 1970s by J. L. Brenner and J. Wiegold [Mich. Math. J. 22, 53–64 (1975; Zbl 0294.20035)], where results on the spread of soluble groups and certain families of simple groups are established. The more restrictive definition of uniform spread was formally introduced much more recently by M. Quick [Int. J. Algebra Comput. 16, No. 3, 493–503 (2006; Zbl 1103.20066)].
The main result proved in the paper under review is Theorem 1: Let $$G$$ be a finite group. Then $$s(G) \geq 2$$ if and only if every proper quotient of $$G$$ is cyclic. As a corollary, it is shown that there is no finite group $$G$$ such that $$s(G)=1$$.
Theorem 3 provides a classification of finite groups $$G$$ with $$u(G) \leq 1$$. In particular (i) $$u(G)=0$$ if and only if $$G$$ has a noncyclic proper quotient, or $$G \simeq \mathsf{Sym}_6$$ or $$C_p \times C_p$$ for a prime $$p$$ and (ii) $$u(G)=1$$ if and only if $$G$$ has a unique minimal normal subgroup $$N=T_{1} \times \ldots \times T_{k}$$ with $$T_{i} \simeq \mathsf{Alt}_{6}$$ where $$k \geq 2$$, $$G/N$$ is cyclic and $$N_{G}(T_{i})/C_{G}(T_{i})\simeq \mathsf{Sym}_{6}$$ for all $$i$$. As an immediate corollary, the authors deduce that if $$G$$ is a finite group of even order all of whose proper quotients are cyclic, then every involution in $$G$$ belongs to a generating pair. Also, they conclude that $$G=\mathsf{Sym}_6$$ is the only finite almost simple group such that $$u(G)<2$$, in particular $$u(\mathsf{Sym}_6)=0$$ and $$s(\mathsf{Sym}_6)=2$$.
The generating graph $$\Gamma(G)$$ of a finite group $$G$$ is the graph whose vertices are the elements of $$G$$ and in which two vertices are connected by an edge if and only if they generate $$G$$. The authors of this impressive paper establish a dichotomy for generating graphs: $$\Gamma(G)$$ either has isolated vertices or is connected and has diameter at most 2.

##### MSC:
 20F05 Generators, relations, and presentations of groups 20E32 Simple groups 20E28 Maximal subgroups 20G41 Exceptional groups 20P05 Probabilistic methods in group theory
##### Citations:
Zbl 0294.20035; Zbl 1103.20066
Full Text:
##### References:
 [1] Aschbacher, M.; Guralnick, R., Some applications of the first cohomology group, J. Algebra. Journal of Algebra, 90, 446-460 (1984) · Zbl 0554.20017 [2] Aschbacher, M.; Scott, L., Maximal subgroups of finite groups, J. Algebra. Journal of Algebra, 92, 44-80 (1985) · Zbl 0549.20011 [3] Ballantyne, John; Bates, Chris; Rowley, Peter, The maximal subgroups of {$$E_7(2)$$}, LMS J. Comput. Math.. LMS Journal of Computation and Mathematics, 18, 323-371 (2015) · Zbl 1317.20010 [4] Binder, G. {\relax Ya}, The bases of the symmetric group, Izv. Vys\v{s}. U\v{c}ebn. Zaved. Matematika. Izvestija Vys\v{s}ih U\v{c}ebnyh Zavedeni\u{\i} Matematika, 78, 19-25 (1968) [5] Binder, G. {\relax Ya}, The two-element bases of the symmetric group, Izv. Vys\v{s}. U\v{c}ebn. Zaved. Matematika. Izvestija Vys\v{s}ih U\v{c}ebnyh Zavedeni\u{\i} Matematika, 92, 9-11 (1970) [6] Binder, G. {\relax Ya}, Some complete sets of complementary elements of the symmetric and the alternating group of {$$n$${\rm -th}} degree, Mat. Zametki. Akademiya Nauk SSSR. Matematicheskie Zametki, 7, 173-180 (1970) [7] Bosma, Wieb; Cannon, John; Playoust, Catherine, The {M}agma algebra system. {I}. {T}he user language, J. Symbolic Comput., 24, 235-265 (1997) · Zbl 0898.68039 [8] Bray, John N.; Holt, Derek F.; Roney-Dougal, Colva M., The Maximal Subgroups of the Low-Dimensional Finite Classical Groups, London Math. Soc. Lecture Note Ser., 407, xiv+438 pp. (2013) · Zbl 1303.20053 [9] Brenner, J. L.; Wiegold, James, Two-generator groups. {I}, Michigan Math. J.. Michigan Mathematical Journal, 22, 53-64 (1975) · Zbl 0294.20035 [10] Breuer, Thomas; Guralnick, Robert M.; Kantor, William M., Probabilistic generation of finite simple groups. {II}, J. Algebra. Journal of Algebra, 320, 443-494 (2008) · Zbl 1181.20013 [11] Burness, Timothy C., Fixed point ratios in actions of finite classical groups. {IV}, J. Algebra. Journal of Algebra, 314, 749-788 (2007) · Zbl 1133.20004 [12] Burness, Timothy C., On base sizes for almost simple primitive groups, J. Algebra. Journal of Algebra, 516, 38-74 (2018) · Zbl 1427.20001 [13] Burness, Timothy C., Simple groups, generation and probabilistic methods. Groups {S}t {A}ndrews 2017 in {B}irmingham, London Math. Soc. Lecture Note Ser., 455, 200-229 (2019) [14] Burness, Timothy C.; Guest, Simon, On the uniform spread of almost simple linear groups, Nagoya Math. J.. Nagoya Mathematical Journal, 209, 35-109 (2013) · Zbl 1271.20012 [15] Burness, Timothy C.; Harper, Scott, Finite groups, 2-generation and the uniform domination number, Israel J. Math.. Israel Journal of Mathematics, 239, 271-367 (2020) · Zbl 1464.20011 [16] Burness, Timothy C.; Liebeck, Martin W.; Shalev, Aner, Base sizes for simple groups and a conjecture of {C}ameron, Proc. Lond. Math. Soc. (3). Proceedings of the London Mathematical Society. Third Series, 98, 116-162 (2009) · Zbl 1179.20002 [17] Burness, Timothy C.; Thomas, Adam R., On the involution fixity of exceptional groups of {L}ie type, Internat. J. Algebra Comput.. International Journal of Algebra and Computation, 28, 411-466 (2018) · Zbl 06902196 [18] Celler, Frank; Leedham-Green, Charles R.; Murray, Scott H.; Niemeyer, Alice C.; O’Brien, E. A., Generating random elements of a finite group, Comm. Algebra. Communications in Algebra, 23, 4931-4948 (1995) · Zbl 0836.20094 [19] Chang, Bomshik, The conjugate classes of {C}hevalley groups of type {$$(G\sb{2})$$}, J. Algebra. Journal of Algebra, 9, 190-211 (1968) · Zbl 0285.20043 [20] Cohen, Arjeh M.; Liebeck, Martin W.; Saxl, Jan; Seitz, Gary M., The local maximal subgroups of exceptional groups of {L}ie type, finite and algebraic, Proc. London Math. Soc. (3). Proceedings of the London Mathematical Society. Third Series, 64, 21-48 (1992) · Zbl 0706.20037 [21] Conway, J. H.; Curtis, R. T.; Norton, S. P.; Parker, R. A.; Wilson, R. A., {ATLAS} of Finite Groups, xxxiv+252 pp. (1985) [22] Cooperstein, Bruce N., Maximal subgroups of {$$G\sb{2}(2\sp{n})$$}, J. Algebra. Journal of Algebra, 70, 23-36 (1981) · Zbl 0459.20007 [23] Craven, David A., Alternating subgroups of exceptional groups of {L}ie type, Proc. Lond. Math. Soc. (3). Proceedings of the London Mathematical Society. Third Series, 115, 449-501 (2017) · Zbl 1428.20018 [24] Craven, David A., Maximal {$${\rm PSL}_2$$} subgroups of exceptional groups of {L}ie type (2021) [25] Craven, David A., On medium-rank {L}ie primitive and maximal subgroups of exceptional groups of {L}ie type (2022) [26] Deriziotis, D. I.; Michler, G. O., Character table and blocks of finite simple triality groups {$$^3D_4(q)$$}, Trans. Amer. Math. Soc.. Transactions of the American Mathematical Society, 303, 39-70 (1987) · Zbl 0628.20014 [27] Donoven, Casey; Harper, Scott, Infinite {$$\frac 32$$}-generated groups, Bull. Lond. Math. Soc.. Bulletin of the London Mathematical Society, 52, 657-673 (2020) · Zbl 1472.20069 [28] Enomoto, Hikoe, The conjugacy classes of {C}hevalley groups of type {$$(G\sb{2})$$} over finite fields of characteristic {$$2$$} or {$$3$$}, J. Fac. Sci. Univ. Tokyo Sect. I. Journal of the Faculty of Science. Univ. of Tokyo. Section I, 16, 497-512 (1969) · Zbl 0242.20049 [29] Evans, Martin J., {$$T$$}-systems of certain finite simple groups, Math. Proc. Cambridge Philos. Soc.. Mathematical Proceedings of the Cambridge Philosophical Society, 113, 9-22 (1993) · Zbl 0781.20021 [30] Fleischmann, Peter; Janiszczak, Ingo, The semisimple conjugacy classes and the generic class number of the finite simple groups of {L}ie type {$$E_8$$}, Comm. Algebra. Communications in Algebra, 22, 2221-2303 (1994) · Zbl 0816.20015 [31] Fried, Michael D.; Guralnick, Robert; Saxl, Jan, Schur covers and {C}arlitz’s conjecture, Israel J. Math.. Israel Journal of Mathematics, 82, 157-225 (1993) · Zbl 0855.11063 [32] Gorenstein, Daniel; Lyons, Richard; Solomon, Ronald, The Classification of the Finite Simple Groups. {N}umber 3., Math. Surveys Monogr., 40, xvi+419 pp. (1998) · Zbl 0890.20012 [33] Guba, V. S., A finitely generated simple group with free {$$2$$}-generated subgroups, Sibirsk. Mat. Zh.. Akademiya Nauk SSSR. Sibirskoe Otdelenie. Sibirski\u{\i} Matematicheski\u{\i} Zhurnal, 27, 50-67 (1986) · Zbl 0616.20013 [34] Guest, Simon; Morris, Joy; Praeger, Cheryl E.; Spiga, Pablo, On the maximum orders of elements of finite almost simple groups and primitive permutation groups, Trans. Amer. Math. Soc.. Transactions of the American Mathematical Society, 367, 7665-7694 (2015) · Zbl 1330.20002 [35] Guralnick, Robert M.; Kantor, William M., Probabilistic generation of finite simple groups. special issue in honor of {H}elmut {W}ielandt, J. Algebra. Journal of Algebra, 234, 743-792 (2000) · Zbl 0973.20012 [36] Guralnick, Robert M.; Shalev, Aner, On the spread of finite simple groups, Combinatorica. Combinatorica. An International Journal on Combinatorics and the Theory of Computing, 23, 73-87 (2003) · Zbl 1027.20004 [37] Harper, Scott, On the uniform spread of almost simple symplectic and orthogonal groups, J. Algebra. Journal of Algebra, 490, 330-371 (2017) · Zbl 1427.20023 [38] Harper, Scott, The spread of almost simple classical groups · Zbl 1427.20023 [39] Kantor, William M.; Seress, \'{A}kos, Large element orders and the characteristic of {L}ie-type simple groups, J. Algebra. Journal of Algebra, 322, 802-832 (2009) · Zbl 1180.20009 [40] Kawanaka, Noriaki, On the irreducible characters of the finite unitary groups, J. Math. Soc. Japan. Journal of the Mathematical Society of Japan, 29, 425-450 (1977) · Zbl 0353.20031 [41] Kleidman, Peter B., The maximal subgroups of the {S}teinberg triality groups {$$^3D_4(q)$$} and of their automorphism groups, J. Algebra. Journal of Algebra, 115, 182-199 (1988) · Zbl 0642.20013 [42] Kleidman, Peter B., The maximal subgroups of the {C}hevalley groups {$$G_2(q)$$} with {$$q$$} odd, the {R}ee groups {$$^2G_2(q)$$}, and their automorphism groups, J. Algebra. Journal of Algebra, 117, 30-71 (1988) · Zbl 0651.20020 [43] Kleidman, Peter B.; Liebeck, Martin, The Subgroup Structure of the Finite Classical Groups, London Math. Soc. Lecture Note Ser., 129, x+303 pp. (1990) · Zbl 0697.20004 [44] Kleidman, Peter B.; Wilson, Robert A., The maximal subgroups of {$$E_6(2)$$} and {$${\rm Aut}(E_6(2))$$}, Proc. London Math. Soc. (3). Proceedings of the London Mathematical Society. Third Series, 60, 266-294 (1990) · Zbl 0715.20008 [45] Lawther, R., Sublattices generated by root differences, J. Algebra. Journal of Algebra, 412, 255-263 (2014) · Zbl 1344.17011 [46] Lawther, R.; Liebeck, Martin W.; Seitz, Gary M., Fixed point spaces in actions of exceptional algebraic groups, Pacific J. Math.. Pacific Journal of Mathematics, 205, 339-391 (2002) · Zbl 1058.20039 [47] Lawther, Ross; Liebeck, Martin W.; Seitz, Gary M., Fixed point ratios in actions of finite exceptional groups of {L}ie type, Pacific J. Math.. Pacific Journal of Mathematics, 205, 393-464 (2002) · Zbl 1058.20001 [48] Liebeck, Martin W.; Saxl, Jan; Seitz, Gary M., Subgroups of maximal rank in finite exceptional groups of {L}ie type, Proc. London Math. Soc. (3). Proceedings of the London Mathematical Society. Third Series, 65, 297-325 (1992) · Zbl 0776.20012 [49] Liebeck, Martin W.; Seitz, Gary M., Maximal subgroups of exceptional groups of {L}ie type, finite and algebraic, Geom. Dedicata. Geometriae Dedicata, 35, 353-387 (1990) · Zbl 0721.20030 [50] Liebeck, Martin W.; Seitz, Gary M., On finite subgroups of exceptional algebraic groups, J. Reine Angew. Math.. Journal f\"{u}r die Reine und Angewandte Mathematik. [Crelle’s Journal], 515, 25-72 (1999) · Zbl 0980.20034 [51] Liebeck, Martin W.; Seitz, Gary M., A survey of maximal subgroups of exceptional groups of {L}ie type. Groups, Combinatorics & Geometry, 139-146 (2003) · Zbl 1032.20010 [52] Liebeck, Martin W.; Shalev, Aner, Classical groups, probabilistic methods, and the {$$(2,3)$$}-generation problem, Ann. of Math. (2). Annals of Mathematics. Second Series, 144, 77-125 (1996) · Zbl 0865.20020 [53] Litterick, Alastair J., On non-generic finite subgroups of exceptional algebraic groups, Mem. Amer. Math. Soc.. Memoirs of the American Mathematical Society, 253, v+156 pp. (2018) · Zbl 1435.20001 [54] available on author’s webpage, Centralisers and numbers of semisimple classes in exceptional groups of {L}ie type [55] Lucchini, Andrea; Menegazzo, Federico, Generators for finite groups with a unique minimal normal subgroup, Rend. Sem. Mat. Univ. Padova. Rendiconti del Seminario Matematico della Universit\`a di Padova. The Mathematical Journal of the Univ. of Padova, 98, 173-191 (1997) · Zbl 0895.20027 [56] Malle, Gunter, The maximal subgroups of {$${}^2F_4(q^2)$$}, J. Algebra. Journal of Algebra, 139, 52-69 (1991) · Zbl 0725.20014 [57] Norton, S. P.; Wilson, R. A., The maximal subgroups of {$$F_4(2)$$} and its automorphism group, Comm. Algebra. Communications in Algebra, 17, 2809-2824 (1989) · Zbl 0692.20010 [58] Pak, Igor, What do we know about the product replacement algorithm?. Groups and Computation, {III}, Ohio State Univ. Math. Res. Inst. Publ., 8, 301-347 (2001) · Zbl 0986.68172 [59] Piccard, Sophie, Sur les bases du groupe sym\'{e}trique et du groupe alternant, Math. Ann.. Mathematische Annalen, 116, 752-767 (1939) · Zbl 0022.01002 [60] Shinoda, Kenichi, The conjugacy classes of {C}hevalley groups of type {$$(F\sb{4})$$} over finite fields of characteristic {$$2$$}, J. Fac. Sci. Univ. Tokyo Sect. I A Math., 21, 133-159 (1974) · Zbl 0306.20013 [61] Shinoda, Kenichi, The conjugacy classes of the finite {R}ee groups of type {$$(F\sb{4})$$}, J. Fac. Sci. Univ. Tokyo Sect. I A Math., 22, 1-15 (1975) [62] Shintani, Takuro, Two remarks on irreducible characters of finite general linear groups, J. Math. Soc. Japan. Journal of the Mathematical Society of Japan, 28, 396-414 (1976) · Zbl 0323.20041 [63] Shoji, Toshiaki, The conjugacy classes of {C}hevalley groups of type {$$(F\sb{4})$$} over finite fields of characteristic {$$p\not=2$$}, J. Fac. Sci. Univ. Tokyo Sect. IA Math.. Journal of the Faculty of Science. Univ. of Tokyo. Section IA. Mathematics, 21, 1-17 (1974) · Zbl 0279.20038 [64] Stein, Alexander, {$$1\frac12$$}-generation of finite simple groups, Beitr\"{a}ge Algebra Geom.. Beitr\"{a}ge zur Algebra und Geometrie. Contributions to Algebra and Geometry, 39, 349-358 (1998) · Zbl 0924.20027 [65] Steinberg, Robert, Generators for simple groups, Canadian J. Math.. Canadian Journal of Mathematics. Journal Canadien de Math\'{e}matiques, 14, 277-283 (1962) · Zbl 0103.26204 [66] Suzuki, Michio, On a class of doubly transitive groups, Ann. of Math. (2). Annals of Mathematics. Second Series, 75, 105-145 (1962) · Zbl 0106.24702 [67] Ward, Harold N., On {R}ee’s series of simple groups, Trans. Amer. Math. Soc.. Transactions of the American Mathematical Society, 121, 62-89 (1966) · Zbl 0139.24902 [68] Weigel, Thomas S., Generation of exceptional groups of {L}ie-type, Geom. Dedicata. Geometriae Dedicata, 41, 63-87 (1992) · Zbl 0758.20001 [69] Wilson, Robert A., The Finite Simple Groups, Grad. Texts in Math., 251, xvi+298 pp. (2009) · Zbl 1203.20012 [70] Wilson, Robert A., Maximal subgroups of $${}^2{E}_6(2)$$ and its automorphism groups (2022) [71] Zsigmondy, K., Zur {T}heorie der {P}otenzreste, Monatsh. Math. Phys.. Monatshefte f\"{u}r Mathematik und Physik, 3, 265-284 (1892) · JFM 24.0176.02
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.