×

zbMATH — the first resource for mathematics

Regularised non-uniform segments and efficient no-slip elastohydrodynamics. (English) Zbl 1461.76599
Summary: The elastohydrodynamics of slender bodies in a viscous fluid have long been the source of theoretical investigation, being pertinent to the microscale world of ciliates and flagellates as well as to biological and engineered active matter more generally. Although recent works have overcome the severe numerical stiffness typically associated with slender elastohydrodynamics, employing both local and non-local couplings to the surrounding fluid, there is no framework of comparable efficiency that rigorously justifies its hydrodynamic accuracy. In this study, we combine developments in filament elastohydrodynamics with a recent regularised slender-body theory, affording algebraic asymptotic accuracy to the commonly imposed no-slip condition on the surface of a slender filament of potentially non-uniform cross-sectional radius. Further, we do this whilst retaining the remarkable practical efficiency of contemporary elastohydrodynamic approaches, having drawn inspiration from the method of regularised Stokeslet segments to yield an efficient and flexible slender-body theory of regularised non-uniform segments.
MSC:
76Z10 Biopropulsion in water and in air
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ainley, J., Durkin, S., Embid, R., Boindala, P. & Cortez, R.2008The method of images for regularized Stokeslets. J. Comput. Phys.227 (9), 4600-4616. · Zbl 1388.76060
[2] Chwang, A.T. & Wu, T.Y.-T.1975Hydromechanics of low-Reynolds-number flow. Part 2. Singularity method for Stokes flows. J. Fluid Mech.67 (4), 787-815. · Zbl 0309.76016
[3] Cortez, R.2001The method of regularized Stokeslets. SIAM J. Sci. Comput.23 (4), 1204-1225. · Zbl 1064.76080
[4] Cortez, R.2018Regularized Stokeslet segments. J. Comput. Phys.375, 783-796. · Zbl 1416.76208
[5] Cortez, R. & Nicholas, M.2012Slender body theory for Stokes flows with regularized forces. Commun. Appl. Maths Comput. Sci.7 (1), 33-62. · Zbl 1452.76055
[6] Cox, R.G.1970The motion of long slender bodies in a viscous fluid Part 1. General theory. J. Fluid Mech.44 (04), 791-810. · Zbl 0267.76015
[7] Curtis, M.P., Kirkman-Brown, J.C., Connolly, T.J. & Gaffney, E.A.2012Modelling a tethered mammalian sperm cell undergoing hyperactivation. J. Theor. Biol.309, 1-10. · Zbl 1411.92035
[8] Gillies, E.A., Cannon, R.M., Green, R.B. & Pacey, A.A.2009Hydrodynamic propulsion of human sperm. J. Fluid Mech.625, 445-474. · Zbl 1171.76477
[9] Gray, J.1928Ciliary Movement. Cambridge University Press.
[10] Gray, J. & Hancock, G.J.1955The propulsion of sea-urchin spermatozoa. J. Exp. Biol.32 (4), 802-814.
[11] Guglielmini, L., Kushwaha, A., Shaqfeh, E.S.G. & Stone, H.A.2012Buckling transitions of an elastic filament in a viscous stagnation point flow. Phys. Fluids24 (12), 123601.
[12] Hall-Mcnair, A.L., Montenegro-Johnson, T.D., Gadêlha, H., Smith, D.J. & Gallagher, M.T.2019Efficient implementation of elastohydrodynamics via integral operators. Phys. Rev. Fluids4 (11), 1-24.
[13] Hancock, G.J.1953The self-propulsion of microscopic organisms through liquids. Proc. R. Soc. Lond. A217 (1128), 96-121.
[14] Ishimoto, K. & Gaffney, E.A.2018An elastohydrodynamical simulation study of filament and spermatozoan swimming driven by internal couples. IMA J. Appl. Maths83 (4), 655-679. · Zbl 1408.76627
[15] Johnson, R.E.1980An improved slender-body theory for Stokes flow. J. Fluid Mech.99 (2), 411-431. · Zbl 0447.76037
[16] Keller, J.B. & Rubinow, S.I.1976Slender-body theory for slow viscous flow. J. Fluid Mech.75 (4), 705-714. · Zbl 0377.76036
[17] Lighthill, J.1976Flagellar hydrodynamics. SIAM Rev.18 (2), 161-230. · Zbl 0366.76099
[18] Moreau, C., Giraldi, L. & Gadêlha, H.2018The asymptotic coarse-graining formulation of slender-rods, bio-filaments and flagella. J. R. Soc. Interface15 (144), 20180235.
[19] Neal, C.V., Hall-Mcnair, A.L., Kirkman-Brown, J., Smith, D.J. & Gallagher, M.T.2020Doing more with less: the flagellar end piece enhances the propulsive effectiveness of human spermatozoa. Phys. Rev. Fluids5 (7), 073101.
[20] Olson, S.D., Lim, S. & Cortez, R.2013Modeling the dynamics of an elastic rod with intrinsic curvature and twist using a regularized Stokes formulation. J. Comput. Phys.238, 169-187. · Zbl 1286.74122
[21] Pozrikidis, C.1992Boundary Integral and Singularity Methods for Linearized Viscous Flow. Cambridge University Press. · Zbl 0772.76005
[22] Pozrikidis, C.2010Shear flow over cylindrical rods attached to a substrate. J. Fluids Struct.26 (3), 393-405.
[23] Roper, M., Dreyfus, R., Baudry, J., Fermigier, M., Bibette, J. & Stone, H.A.2006On the dynamics of magnetically driven elastic filaments. J. Fluid Mech.554, 167-190. · Zbl 1156.76472
[24] Du Roure, O., Lindner, A., Nazockdast, E.N. & Shelley, M.J.2019Dynamics of flexible fibers in viscous flows and fluids. Annu. Rev. Fluid Mech.51 (1), 539-572. · Zbl 1412.76030
[25] Schoeller, S.F. & Keaveny, E.E.2018From flagellar undulations to collective motion: predicting the dynamics of sperm suspensions. J. R. Soc. Interface15 (140), 20170834.
[26] Shampine, L.F. & Reichelt, M.W.1997The MATLAB ODE suite. SIAM J. Sci. Comput.18 (1), 1-22. · Zbl 0868.65040
[27] Simons, J., Fauci, L. & Cortez, R.2015A fully three-dimensional model of the interaction of driven elastic filaments in a Stokes flow with applications to sperm motility. J. Biomech.48 (9), 1639-1651.
[28] Smith, D.J.2009A boundary element regularized Stokeslet method applied to cilia- and flagella-driven flow. Proc. R. Soc. Lond. A465 (2112), 3605-3626. · Zbl 1195.76452
[29] Smith, D.J., Montenegro-Johnson, T.D. & Lopes, S.S.2019Symmetry-breaking cilia-driven flow in embryogenesis. Annu. Rev. Fluid Mech.51 (1), 105-128. · Zbl 1412.76112
[30] Tornberg, A.K. & Shelley, M.J.2004Simulating the dynamics and interactions of flexible fibers in Stokes flows. J. Comput. Phys.196 (1), 8-40. · Zbl 1115.76413
[31] Walker, B.J., Curtis, M.P., Ishimoto, K. & Gaffney, E.A.2020aA regularised slender-body theory of non-uniform filaments. J. Fluid Mech.899, A3. · Zbl 1460.76250
[32] Walker, B.J., Ishimoto, K. & Gaffney, E.A.2020bEfficient simulation of filament elastohydrodynamics in three dimensions.Phys. Rev. Fluids5 (12), 123103.
[33] Walker, B.J., Ishimoto, K., Gadêlha, H. & Gaffney, E.A.2019Filament mechanics in a half-space via regularised Stokeslet segments. J. Fluid Mech.879, 808-833. · Zbl 1430.76509
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.