zbMATH — the first resource for mathematics

Representing model discrepancy in bound-to-bound data collaboration. (English) Zbl 1462.62765
62R07 Statistical aspects of big data and data science
68T37 Reasoning under uncertainty in the context of artificial intelligence
Full Text: DOI
[1] H. Akaike, A new look at the statistical model identification, in Selected Papers of Hirotugu Akaike, Springer, 1974, pp. 215-222. · Zbl 0314.62039
[2] M. J. Bayarri, J. O. Berger, R. Paulo, J. Sacks, J. A. Cafeo, J. Cavendish, C.-H. Lin, and J. Tu, A framework for validation of computer models, Technometrics, 49 (2007), pp. 138-154.
[3] J. F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems, Springer Ser. Oper. Res., Springer, 2000. · Zbl 0966.49001
[4] G. Box and R. D. Meyer, Some new ideas in the analysis of screening designs, J. Res. Nat. Bur. Stand., 90 (1985), pp. 495-500.
[5] G. E. Box and W. G. Hunter, The experimental study of physical mechanisms, Technometrics, 7 (1965), pp. 23-42.
[6] J. Brynjarsdóttir and A. O’Hagan, Learning about physical parameters: The importance of model discrepancy, Inverse Problems, 30 (2014), 114007.
[7] J.-P. Calliess, S. Roberts, C. Rasmussen, and J. Maciejowski, Nonlinear set membership regression with adaptive hyper-parameter estimation for online learning and control, in Proceedings of the 2018 European Control Conference (ECC), IEEE, 2018, pp. 1-6.
[8] L. Chisci, A. Garulli, and G. Zappa, Recursive state bounding by parallelotopes, Automatica, 32 (1996), pp. 1049-1055.
[9] P. S. Craig, M. Goldstein, A. H. Seheult, and J. A. Smith, Pressure matching for hydrocarbon reservoirs: A case study in the use of Bayes linear strategies for large computer experiments, in Case Studies in Bayesian Statistics, Springer, 1997, pp. 37-93. · Zbl 0895.62105
[10] D. E. Edwards, D. Y. Zubarev, A. Packard, W. A. Lester, Jr., and M. Frenklach, Interval prediction of molecular properties in parametrized quantum chemistry, Phys. Rev. Lett., 112 (2014), p. 253003, https://doi.org/10.1103/PhysRevLett.112.253003.
[11] R. Feeley, M. Frenklach, M. Onsum, T. Russi, A. Arkin, and A. Packard, Model discrimination using data collaboration, J. Phys. Chem. A, 110 (2006), pp. 6803-6813, https://doi.org/10.1021/jp056309s.
[12] R. Feeley, P. Seiler, A. Packard, and M. Frenklach, Consistency of a reaction dataset, J. Phys. Chem. A, 108 (2004), pp. 9573-9583.
[13] R. P. Feeley, Fighting the Curse of Dimensionality: A Method for Model Validation and Uncertainty Propagation for Complex Simulation Models, Ph.D. thesis, University of California, Berkeley, 2008.
[14] E. Fogel and Y.-F. Huang, On the value of information in system identification-bounded noise case, Automatica, 18 (1982), pp. 229-238. · Zbl 0433.93062
[15] M. Frenklach, Transforming data into knowledge-Process Informatics for combustion chemistry, Proc. Combust. Inst., 31 (2007), pp. 125-140, https://doi.org/10.1016/j.proci.2006.08.121.
[16] M. Frenklach, A. Packard, and R. Feeley, Optimization of reaction models with solution mapping, in Modeling of Chemical Reactions, R. W. Carr, ed., Elsevier, 2007, pp. 243-291.
[17] M. Frenklach, A. Packard, G. Garcia-Donato, R. Paulo, and J. Sacks, Comparison of statistical and deterministic frameworks of uncertainty quantification, SIAM/ASA J. Uncertain. Quantif., 4 (2016), pp. 875-901, https://doi.org/10.1137/15M1019131. · Zbl 1356.62037
[18] M. Frenklach, A. Packard, and P. Seiler, Prediction uncertainty from models and data, in Proceedings of the 2002 American Control Conference, Vol. 5, IEEE, 2002, pp. 4135-4140.
[19] M. Frenklach, A. Packard, P. Seiler, and R. Feeley, Collaborative data processing in developing predictive models of complex reaction systems, Int. J. Chem. Kinet., 36 (2004), pp. 57-66.
[20] A. Garulli, A. Vicino, and G. Zappa, Conditional central algorithms for worst case set-membership identification and filtering, IEEE Trans. Automat. Control, 45 (2000), pp. 14-23. · Zbl 0971.93072
[21] A. Gelman, J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari, and D. B. Rubin, Bayesian Data Analysis, Chapman and Hall/CRC, 2013.
[22] M. Goldstein and J. Rougier, Reified Bayesian modelling and inference for physical systems, J. Statist. Plann. Inference, 139 (2009), pp. 1221-1239. · Zbl 1156.62316
[23] M. Grant and S. Boyd, Graph implementations for nonsmooth convex programs, in Recent Advances in Learning and Control, V. Blondel, S. Boyd, and H. Kimura, eds., Lecture Notes in Control and Inform. Sci. 371, Springer, 2008, pp. 95-110, https://doi.org/10.1007/978-1-84800-155-8_7. · Zbl 1205.90223
[24] M. Grant and S. Boyd, CVX: MATLAB Software for Disciplined Convex Programming, Version 2.1, http://cvxr.com/cvx, Mar. 2014.
[25] A. Hegde, W. Li, J. Oreluk, A. Packard, and M. Frenklach, Consistency analysis for massively inconsistent datasets in bound-to-bound data collaboration, SIAM/ASA J. Uncertain. Quantif., 6 (2018), pp. 429-456, https://doi.org/10.1137/16M1110005. · Zbl 1387.62130
[26] D. Higdon, M. Kennedy, J. C. Cavendish, J. A. Cafeo, and R. D. Ryne, Combining field data and computer simulations for calibration and prediction, SIAM J. Sci. Comput., 26 (2004), pp. 448-466, https://doi.org/10.1137/S1064827503426693. · Zbl 1072.62018
[27] S. Iavarone, J. Oreluk, S. T. Smith, A. Hegde, W. Li, A. Packard, M. Frenklach, P. J. Smith, F. Contino, and A. Parente, Application of bound-to-bound data collaboration approach for development and uncertainty quantification of a reduced char combustion model, Fuel, 232 (2018), pp. 769-779.
[28] L. Jaulin, M. Kieffer, O. Didrit, and E. Walter, Interval analysis, in Applied Interval Analysis, Springer, 2001, pp. 11-43. · Zbl 1023.65037
[29] V. R. Joseph and S. N. Melkote, Statistical adjustments to engineering models, J. Qual. Technol., 41 (2009), pp. 362-375.
[30] M. C. Kennedy and A. O’Hagan, Bayesian calibration of computer models, J. R. Stat. Soc. Ser. B Stat. Methodol., 63 (2001), pp. 425-464. · Zbl 1007.62021
[31] W. Kleiber, S. R. Sain, M. J. Heaton, M. Wiltberger, C. S. Reese, and D. Bingham, Parameter tuning for a multi-fidelity dynamical model of the magnetosphere, Ann. Appl. Stat., 7 (2013), pp. 1286-1310. · Zbl 1283.62243
[32] W. Li, A. Hegde, J. Oreluk, A. Packard, and M. Frenklach, \(B2\) BDC Toolbox, https://github.com/B2BDC/B2BDC/, 2017.
[33] M. Milanese and A. Vicino, Optimal estimation theory for dynamic systems with set membership uncertainty: An overview, Automatica, 27 (1991), pp. 997-1009. · Zbl 0737.62088
[34] R. Myers, D. Montgomery, and C. Anderson-Cook, Response Surface Methodology: Process and Product Optimization Using Designed Experiments, Wiley Series in Probability and Statistics, Wiley, 2009, https://books.google.fi/books?id=89oznEFHF_MC. · Zbl 1269.62066
[35] W. L. Oberkampf and C. J. Roy, Verification and Validation in Scientific Computing, Cambridge University Press, 2010. · Zbl 1211.68499
[36] J. Oreluk, Z. Liu, A. Hegde, W. Li, A. Packard, M. Frenklach, and D. Zubarev, Diagnostics of data-driven models: Uncertainty quantification of pm \(7\) semi-empirical quantum chemical method, Sci. Rep., 8 (2018), 13248.
[37] J. Pedel, J. N. Thornock, and P. J. Smith, Ignition of co-axial turbulent diffusion oxy-coal jet flames: Experiments and simulations collaboration, Combust. Flame, 160 (2013), pp. 1112-1128, https://doi.org/10.1016/j.combustflame.2013.01.022.
[38] N. D. Perić, R. Paulen, M. E. Villanueva, and B. Chachuat, Set-membership nonlinear regression approach to parameter estimation, J. Process. Control, 70 (2018), pp. 80-95.
[39] M. Plumlee, Bayesian calibration of inexact computer models, J. Amer. Statist. Assoc., 112 (2017), pp. 1274-1285.
[40] P. Z. Qian and C. J. Wu, Bayesian hierarchical modeling for integrating low-accuracy and high-accuracy experiments, Technometrics, 50 (2008), pp. 192-204.
[41] T. Russi, A. Packard, R. Feeley, and M. Frenklach, Sensitivity analysis of uncertainty in model prediction, J. Phys. Chem. A, 112 (2008), pp. 2579-2588, https://doi.org/10.1021/jp076861c.
[42] T. Russi, A. Packard, and M. Frenklach, Uncertainty quantification: Making predictions of complex reaction systems reliable, Chem. Phys. Lett., 499 (2010), pp. 1-8.
[43] J. Sacks, W. J. Welch, T. J. Mitchell, and H. P. Wynn, Design and analysis of computer experiments, Statist. Sci., 4 (1989), pp. 409-435. · Zbl 0955.62619
[44] F. Schweppe, Recursive state estimation: Unknown but bounded errors and system inputs, IEEE Trans. Automat. Control, 13 (1968), pp. 22-28.
[45] P. Seiler, M. Frenklach, A. Packard, and R. Feeley, Numerical approaches for collaborative data processing, Optim. Eng., 7 (2006), pp. 459-478. · Zbl 1171.65400
[46] N. A. Slavinskaya, M. Abbasi, J. H. Starcke, R. Whitside, A. Mirzayeva, U. Riedel, W. Li, J. Oreluk, A. Hegde, A. Packard, M. Frenklach, G. Gerasimov, and O. Shatalov, Development of an uncertainty quantification predictive chemical reaction model for syngas combustion, Energy Fuels, 31 (2017), pp. 2274-2297, https://doi.org/10.1021/acs.energyfuels.6b02319.
[47] G. P. Smith, M. Frenklach, R. Feeley, A. Packard, and P. Seiler, A system analysis approach for atmospheric observations and models: Mesospheric \(HO_x\) dilemma, J. Geophys. Res., 111 (2006), https://doi.org/10.1029/2005JD006846.
[48] G. P. Smith, D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer, M. Goldenberg, C. T. Bowman, R. K. Hanson, S. Song, J. W. C. Gardiner, V. V. Lissianski, and Z. Qin, GRI-Mech 3.0, http://combustion.berkeley.edu/gri-mech/.
[49] M. L. Stein, Interpolation of Spatial Data: Some Theory for Kriging, Springer Ser. Statist., Springer, 1999. · Zbl 0924.62100
[50] C. B. Storlie, W. A. Lane, E. M. Ryan, J. R. Gattiker, and D. M. Higdon, Calibration of computational models with categorical parameters and correlated outputs via Bayesian smoothing spline anova, J. Amer. Statist. Assoc., 110 (2015), pp. 68-82.
[51] J. F. Sturm, Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones, Optim. Methods Softw., 11 (1999), pp. 625-653. · Zbl 0973.90526
[52] E. Walter and H. Piet-Lahanier, Estimation of parameter bounds from bounded-error data: A survey, Math. Comput. Simul., 32 (1990), pp. 449-468.
[53] S. Wang, W. Chen, and K.-L. Tsui, Bayesian validation of computer models, Technometrics, 51 (2009), pp. 439-451.
[54] F. A. Williams, Detailed and reduced chemistry for hydrogen autoignition, J. Loss Prevent. Proc. Ind., 21 (2008), pp. 131-135.
[55] T.-M. Yi, M. Fazel, X. Liu, T. Otitoju, J. Goncalves, A. Papachristodolou, S. Prajna, and J. Doyle, Application of robust model validation using SOSTOOLS to the study of G-protein signaling in yeast, in Proceedings of the International Conference on Foundations of Systems Biology in Engineering (FOSBE), 2005, pp. 133-136, https://orbilu.uni.lu/handle/10993/20437.
[56] X. You, A. Packard, and M. Frenklach, Process informatics tools for predictive modeling: Hydrogen combustion, Int. J. Chem. Kinet., 44 (2012), pp. 101-116.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.