×

zbMATH — the first resource for mathematics

The generalized finite volume SUSHI scheme for the discretization of the Peaceman model. (English) Zbl 07332692
Summary: We demonstrate some a priori estimates of a scheme using stabilization and hybrid interfaces applying to partial differential equations describing miscible displacement in porous media. This system is made of two coupled equations: an anisotropic diffusion equation on the pressure and a convection-diffusion-dispersion equation on the concentration of invading fluid. The anisotropic diffusion operators in both equations require special care while discretizing by a finite volume method SUSHI. Later, we present some numerical experiments.
MSC:
76M10 Finite element methods applied to problems in fluid mechanics
76M12 Finite volume methods applied to problems in fluid mechanics
76S05 Flows in porous media; filtration; seepage
76R99 Diffusion and convection
65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bartels, S.; Jensen, M.; Müller, R., Discontinuous Galerkin finite element convergence for incompressible miscible displacement problems of low regularity, SIAM J. Numer. Anal. 47 (2009), 3720-3743 · Zbl 1410.76154
[2] Becker, J.; Grün, G.; Lenz, M.; Rumpf, M., Numerical methods for fourth order nonlinear degenerate diffusion problems, Appl. Math., Praha 47 (2002), 517-543 · Zbl 1090.35086
[3] Bradji, A.; Fuhrmann, J., Some abstract error estimates of a finite volume scheme for a nonstationary heat equation on general nonconforming multidimensional spatial meshes, Appl. Math., Praha 58 (2013), 1-38 · Zbl 1274.65251
[4] Brenner, K.; Hilhorst, D.; Vu-Do, H.-C., The generalized finite volume SUSHI scheme for the discretization of Richards equation, Vietnam J. Math. 44 (2016), 557-586 · Zbl 1348.35093
[5] Chainais-Hillairet, C.; Droniou, J., Convergence analysis of a mixed finite volume scheme for an elliptic-parabolic system modeling miscible fluid flows in porous media, SIAM J. Numer. Anal. 45 (2007), 2228-2258 · Zbl 1146.76034
[6] Chainais-Hillairet, C.; Krell, S.; Mouton, A., Study of discrete duality finite volume schemes for the Peaceman model, SIAM J. Sci. Comput. 35 (2013), A2928-A2952 · Zbl 1292.76044
[7] Chainais-Hillairet, C.; Krell, S.; Mouton, A., Convergence analysis of a DDFV scheme for a system describing miscible fluid flows in porous media, Numer. Methods Partial Differ. Equations 31 (2015), 723-760 · Zbl 1325.76128
[8] J. Douglas, Jr., The numerical simulation of miscible displacement in porous media, Computational Methods in Nonlinear Mechanics North-Holland, Amsterdam (1980), 225-237 · Zbl 0439.76087
[9] J. Douglas, Jr., Numerical methods for the flow of miscible fluids in porous media, Numerical Methods in Coupled Systems Wiley Series in Numerical Methods in Engineering. Wiley, Chichester (1984), 405-439 · Zbl 0585.76138
[10] J. Douglas, Jr.; R. E. Ewing; M. F. Wheeler, A time-discretization procedure for a mixed finite element approximation of miscible displacement in porous media, RAIRO, Anal. Numér. 17 (1983), 249-265 · Zbl 0526.76094
[11] J. Douglas, Jr.; R. E. Ewing; M. F. Wheeler, The approximation of the pressure by a mixed method in the simulation of miscible displacement, RAIRO, Anal. Numér. 17 (1983), 17-33 · Zbl 0516.76094
[12] J. Douglas, Jr.; J. E. Roberts, Numerical methods for a model for compressible miscible displacement in porous media, Math. Comput. 41 (1983), 441-459 · Zbl 0537.76062
[13] Ewing, R. E.; Russell, T. F.; Wheeler, M. F., Simulation of miscible displacement using mixed methods and a modified method of characteristics, SPE Reservoir Simulation Symposium Society of Petroleum Engineers, San Francisco (1983), ID SPE-12241-MS
[14] Ewing, R. E.; Russell, T. F.; Wheeler, M. F., Convergence analysis of an approximation of miscible displacement in porous media by mixed finite elements and a modified method of characteristics, Comput. Methods Appl. Mech. Eng. 47 (1984), 73-92 (1984) · Zbl 0545.76131
[15] Eymard, R.; Gallouët, T.; Herbin, R., Finite volume methods, Handbook of Numerical Analysis, Volume 7 P. Ciarlet et al. North-Holland/ Elsevier, Amsterdam (2000), 713-1020 · Zbl 0981.65095
[16] Eymard, R.; Gallouët, T.; Herbin, R., Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes SUSHI: A scheme using stabilization and hybrid interfaces, IMA J. Numer. Anal. 30 (2010), 1009-1043 · Zbl 1202.65144
[17] Eymard, R.; Handlovičová, A.; Herbin, R.; Mikula, K.; Stašová, O., Applications of approximate gradient schemes for nonlinear parabolic equations, Appl. Math., Praha 60 (2015), 135-156 · Zbl 1340.65187
[18] Feng, X., On existence and uniqueness results for a coupled systems modeling miscible displacement in porous media, J. Math. Anal. Appl. 194 (1995), 883-910 · Zbl 0856.35030
[19] Jaffre, J.; Roberts, J. E., Upstream weighting and mixed finite elements in the simulation of miscible displacements, RAIRO, Modélisation Math. Anal. Numér. 19 (1985), 443-460 · Zbl 0568.76096
[20] Russell, T. F., Finite elements with characteristics for two-component incompressible miscible displacement, SPE Reservoir Simulation Symposium Society of Petroleum Engineers, New Orleans (1982), ID SPE-10500-MS
[21] Sammon, P. H., Numerical approximations for a miscible displacement process in porous media, SIAM J. Numer. Anal. 23 (1986), 508-542 · Zbl 0608.76084
[22] Wang, H.; Liang, D.; Ewing, R. E.; Lyons, S. L.; Qin, G., An approximation to miscible fluid flows in porous media with point sources and sinks by an Eulerian-Lagrangian localized adjoint method and mixed finite element methods, SIAM J. Sci. Comput. 22 (2000), 561-581 · Zbl 0988.76054
[23] Wang, H.; Liang, D.; Ewing, R. E.; Lyons, S. L.; Qin, G., An improved numerical simulator for different types of flows in porous media, Numer. Methods Partial Differ. Equations 19 (2003), 343-362 · Zbl 1079.76044
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.