×

Variational Gaussian process for optimal sensor placement. (English) Zbl 07332699

Summary: Sensor placement is an optimisation problem that has recently gained great relevance. In order to achieve accurate online updates of a predictive model, sensors are used to provide observations. When sensor location is optimally selected, the predictive model can greatly reduce its internal errors. A greedy-selection algorithm is used for locating these optimal spatial locations from a numerical embedded space. A novel architecture for solving this big data problem is proposed, relying on a variational Gaussian process. The generalisation of the model is further improved via the preconditioning of its inputs: Masked Autoregressive Flows are implemented to learn nonlinear, invertible transformations of the conditionally modelled spatial features. Finally, a global optimisation strategy extending the Mutual Information-based optimisation and fine-tuning of the selected optimal location is proposed. The methodology is parallelised to speed up the computational time, making these tools very fast despite the high complexity associated with both spatial modelling and placement tasks. The model is applied to a real three-dimensional test case considering a room within the Clarence Centre building located in Elephant and Castle, London, UK.

MSC:

65Z05 Applications to the sciences
68T99 Artificial intelligence

Software:

ggplot2; MADE; TensorFlow
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Abhishek, K.; Singh, M. P.; Ghosh, S.; Anand, A., Weather forecasting model using artificial neural network, Procedia Technology 4 (2012), 311-318
[2] Modelling, Applied; Group, Computation, Fluidity manual (Version 4.1), Available at \brokenlink{https://figshare.com/articles/{Fluidity_Manual/1387713}} (2015), 329 pages
[3] Arcucci, R.; D’Amore, L.; Pistoia, J.; Toumi, R.; Murli, A., On the variational data assimilation problem solving and sensitivity analysis, J. Comput. Phys. 335 (2017), 311-326 · Zbl 1375.49036
[4] Arcucci, R.; McIlwraith, D.; Guo, Y.-K., Scalable weak constraint Gaussian processes, Computational Science – ICCS 2019 Lecture Notes in Computer Science 11539. Springer, Cham (2019), 111-125
[5] Arcucci, R.; Mottet, L.; Pain, C.; Guo, Y.-K., Optimal reduced space for variational data assimilation, J. Comput. Phys. 379 (2019), 51-69
[6] Aristodemou, E.; Arcucci, R.; Mottet, L.; Robins, A.; Pain, C.; Guo, Y.-K., Enhancing CFD-LES air pollution prediction accuracy using data assimilation, Building and Environment 165 (2019), Article ID 106383, 15 pages
[7] Beal, M. J., Variational Algorithms for Approximate Bayesian Inference: A Thesis Submitted for the Degree of Doctor of Philosophy of the University of London, University of London, London (2003)
[8] Bentham, J. H. T., Microscale Modelling of Air Flow and Pollutant Dispersion in the Urban Environment: Doctoral Thesis, University of London, London (2004)
[9] Blei, D. M.; Kucukelbir, A.; McAuliffe, J. D., Variational inference: A review for statisticians, J. Am. Stat. Assoc. 112 (2017), 859-877
[10] Bócsi, B.; Hennig, P.; Csató, L.; Peters, J., Learning tracking control with forward models, IEEE International Conference on Robotics and Automation (ICRA) IEEE, New York (2012), 259-264
[11] Cornford, D.; Nabney, I. T.; Williams, C. K. I., Adding constrained discontinuities to Gaussian process models of wind fields, Advances in Neural Information Processing Systems 11 (NIPS 1998) MIT Press, Cambridge (1999), 861-867
[12] Cressie, N., Statistics for spatial data, Terra Nova 4 (1992), 613-617
[13] D’Amore, L.; Arcucci, R.; Marcellino, L.; Murli, A., A parallel three-dimensional variational data assimilation scheme, Numerical Analysis and Applied Mathematics, ICNAAM 2011 AIP Conference Proceedings 1389. AIP, Melville (2011), 1829-1831 · Zbl 1262.65002
[14] Doersch, C., Tutorial on variational autoencoders, Available at https://arxiv.org/abs/1606.05908 (2016), 23 pages
[15] Dur, T. H.; Arcucci, R.; Mottet, L.; Solana, M. Molina; Pain, C.; Guo, Y.-K., Weak constraint Gaussian processes for optimal sensor placement, J. Comput. Sci. 42 (2020), Article ID 101110, 12 pages
[16] Germain, M.; Gregor, K.; Murray, I.; Larochelle, H., MADE: Masked Autoencoder for Distribution Estimation, Proc. Mach. Learn. Res. 37 (2015), 881-889
[17] González-Banos, H., A randomized art-gallery algorithm for sensor placement, SCG’01: Proceedings of the 17th Annual Symposium on Computational Geometry ACM, New York (2001), 232-240 · Zbl 1375.68139
[18] Goodfellow, I.; Bengio, Y.; Courville, A., Deep Learning, Adaptive Computation and Machine Learning. MIT Press, Cambridge (2016) · Zbl 1373.68009
[19] Team, Google Brain, TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems, Available at https://www.tensorflow.org/ (2015)
[20] Guestrin, C.; Krause, A.; Singh, A. P., Near-optimal sensor placements in Gaussian processes, ICML’05: Proceedings of the 22nd International Conference on Machine Learning ACM, New York (2005), 265-272
[21] Hagan, J.; Gillis, A. R.; Chan, J., Explaining official delinquency: A spatial study of class, conflict and control, Sociological Quarterly 19 (1978), 386-398
[22] Hensman, J.; Fusi, N.; Lawrence, N. D., Gaussian processes for big data, Available at https://arxiv.org/abs/1309.6835 (2013), 9 pages
[23] Jarrin, N.; Benhamadouche, S.; Laurence, D.; Prosser, R., A synthetic-eddy-method for generating inflow conditions for large-eddy simulations, Int. J. Heat Fluid Flow 27 (2006), 585-593
[24] Kelly, F. J.; Fussell, J. C., Improving indoor air quality, health and performance within environments where people live, travel, learn and work, Atmospheric Environment 200 (2019), 90-109
[25] Kingma, D. P.; Welling, M., Auto-encoding variational Bayes, Available at https://arxiv.org/abs/1312.6114 (2013), 14 pages
[26] Krause, A.; Singh, A.; Guestrin, C., Near-optimal sensor placements in Gaussian processes: Theory, efficient algorithms and empirical studies, J. Mach. Learn. Res. 9 (2008), 235-284 · Zbl 1225.68192
[27] Kullback, S.; Leibler, R. A., On information and sufficiency, Ann. Math. Stat. 22 (1951), 79-86 · Zbl 0042.38403
[28] Lin, C.-C.; Wang, L. L., Forecasting simulations of indoor environment using data assimilation via an ensemble Kalman filter, Building and Environment 64 (2013), 169-176
[29] Liu, H.; Ong, Y.-S.; Shen, X.; Cai, J., When Gaussian process meets big data: A review of scalable GPs, Available at https://arxiv.org/abs/1807.01065 (2018), 20 pages
[30] MacKay, D. J. C., Introduction to Gaussian processes, Neural Networks and Machine Learning NATO ASI Series F Computer and Systems Sciences 168. Springer, Berlin (1998), 133-166 · Zbl 0936.68081
[31] M. I. Mead, O. A. M. Popoola, G. B. Stewart, P. Landshoff, M. Calleja, M. Hayes, J. J. Baldovi, M. W. McLeod; T. F. Hodgson; J. Dicks; A. Lewis; J. Cohen; R. Baron; J. R. Saffell; R. L. Jones, The use of electrochemical sensors for monitoring urban air quality in low-cost, high-density networks, Atmospheric Environment 70 (2013), 186-203
[32] Pain, C. C.; Umpleby, A. P.; Oliveira, C. R. E. de; Goddard, A. J. H., Tetrahedral mesh optimisation and adaptivity for steady-state and transient finite element calculations, Comput. Methods Appl. Mech. Eng. 190 (2001), 3771-3796 · Zbl 1008.76041
[33] Papamakarios, G.; Pavlakou, T.; Murray, I., Masked autoregressive flow for density estimation, Advances in Neural Information Processing Systems 30 (NIPS 2017) MIT Press, Cambridge (2017), 2338-2347
[34] Pavlidis, D.; Gorman, G. J.; Gomes, J. L. M. A.; Pain, C. C.; ApSimon, H., Synthetic-eddy method for urban atmospheric flow modelling, Boundary-Layer Meteorology 136 (2010), 285-299
[35] Quiñonero-Candela, J.; Rasmussen, C. E., A unifying view of sparse approximate Gaussian process regression, J. Mach. Learn. Res. 6 (2005), 1939-1959 · Zbl 1222.68282
[36] Ramakrishnan, N.; Bailey-Kellogg, C.; Tadepalliy, S.; Pandey, V. N., Gaussian processes for active data mining of spatial aggregates, Proceedings of the 2005 SIAM International Conference on Data Mining SIAM, Philadelphia (2005), 427-438
[37] Rasmussen, C. E., Gaussian processes in machine learning, Advanced Lectures on Machine Learning Lecture Notes in Computer Science 3176. Springer, Berlin (2003), 63-71 · Zbl 1120.68436
[38] Rezende, D. J.; Mohamed, S., Variational inference with normalizing flows, Available at https://arxiv.org/abs/1505.05770 (2015), 10 pages
[39] Smagorinsky, J., General circulation experiments with the primitive equations I. The basic experiment, Mon. Wea. Rev. 91 (1963), 99-164
[40] J. Song, S. Fan, W. Lin, L. Mottet, H. Woodward, M. Davies Wykes, R. Arcucci, D. Xiao, J.-E. Debay, H. ApSimon, E. Aristodenou, D. Birch, M. Carpentieri, F. Fang, M. Herzog; G. R. Hunt; R. L. Jones; C. Pain; D. Pavlidis; A. G. Robins; C. A. Short; P. F. Linden, Natural ventilation in cities: The implications of fluid mechanics, Building Research & Information 46 (2018), 809-828
[41] Titsias, M. K., Variational learning of inducing variables in sparse Gaussian processes, Proc. Mach. Learn. Res. 5 (2009), 567-574
[42] Titsias, M. K., Variational Model Selection for Sparse Gaussian Process Regression, Technical report, University of Manchester, Manchester (2009)
[43] Tran, V. H., Copula variational Bayes inference via information geometry, Available at https://arxiv.org/abs/1803.10998 (2018), 23 pages
[44] Tran, D.; Ranganath, R.; Blei, D. M., The variational Gaussian process, Available at https://arxiv.org/abs/1511.06499 (2015), 14 pages
[45] Wickham, H., ggplot2: Elegant Graphics for Data Analysis, Use R! Springer, Cham (2016) · Zbl 1397.62006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.