zbMATH — the first resource for mathematics

Synchronization of clocks and metronomes: a perturbation analysis based on multiple timescales. (English) Zbl 1458.34097
Summary: In 1665, Huygens observed that two pendulum clocks hanging from the same board became synchronized in antiphase after hundreds of swings. On the other hand, modern experiments with metronomes placed on a movable platform show that they often tend to synchronize in phase, not antiphase. Here, we study both in-phase and antiphase synchronization in a model of pendulum clocks and metronomes and analyze their long-term dynamics with the tools of perturbation theory. Specifically, we exploit the separation of timescales between the fast oscillations of the individual pendulums and the much slower adjustments of their amplitudes and phases. By scaling the equations appropriately and applying the method of multiple timescales, we derive explicit formulas for the regimes in the parameter space where either antiphase or in-phase synchronization is stable or where both are stable. Although this sort of perturbative analysis is standard in other parts of nonlinear science, surprisingly it has rarely been applied in the context of Huygens’s clocks. Unusual features of our approach include its treatment of the escapement mechanism, a small-angle approximation up to cubic order, and both a two- and three-timescale asymptotic analysis.
©2021 American Institute of Physics
34D06 Synchronization of solutions to ordinary differential equations
34D10 Perturbations of ordinary differential equations
34C15 Nonlinear oscillations and coupled oscillators for ordinary differential equations
34N05 Dynamic equations on time scales or measure chains
Full Text: DOI
[1] Winfree, A. T., The Geometry of Biological Time (1980), Springer-Verlag · Zbl 0464.92001
[2] Pikovsky, A.; Rosenblum, M.; Kurths, J., Synchronization: A Universal Concept in Nonlinear Sciences (2001), Cambridge University Press · Zbl 0993.37002
[3] Strogatz, S. H., Sync (2003), Hyperion
[4] Blekhman, I. I., Synchronization in Science and Technology (1988), American Society of Mechanical Engineers Press
[5] Huygens, C., Oeuvres complètes de Christiaan Huygens, edited by M. Nijhoff (Societé Hollandaise des Sciences, 1893), Vol. 5, pp. 241-262. · JFM 23.0019.01
[6] Yoder, J. G., Unrolling Time: Christiaan Huygens and the Mathematization of Nature (2004), Cambridge University Press
[7] Ramirez, J. P.; Nijmeijer, H., The secret of the synchronized pendulums, Phys. World, 33, 36 (2020)
[8] Ellicott, J., An account of the influence which two pendulum clocks were observed to have upon each other, Philos. Trans. R. Soc., 41, 126-128 (1740)
[9] Ellicott, J., Further observations and experiments concerning the two clocks above mentioned, Philos. Trans. R. Soc., 41, 128-135 (1740)
[10] Ellis, W., On sympathetic influence between clocks, Mon. Not. R. Astron. Soc., 33, 480 (1873)
[11] Korteweg, D., Les horloges sympathiques de Huygens, Arch. Neerlandaises Serie II, 11, 273-295 (1906) · JFM 36.0776.04
[12] Bennett, M.; Schatz, M. F.; Rockwood, H.; Wiesenfeld, K., Huygens’s clocks, Proc. R. Soc. A, 458, 563-579 (2002) · Zbl 1026.01007
[13] Oud, W., Nijmeijer, H., and Pogromsky, A. Y., “A study of Huijgens’ synchronization: Experimental results,” in Group Coordination and Cooperative Control (Springer, 2006), pp. 191-203. · Zbl 1217.93129
[14] Senator, M., Synchronization of two coupled escapement-driven pendulum clocks, J. Sound Vib., 291, 566-603 (2006)
[15] Dilão, R., Antiphase and in-phase synchronization of nonlinear oscillators: The Huygens’s clocks system, Chaos, 19, 023118 (2009) · Zbl 1309.34054
[16] Czolczynski, K.; Perlikowski, P.; Stefanski, A.; Kapitaniak, T., Clustering of Huygens’ clocks, Prog. Theor. Phys., 122, 1027-1033 (2009) · Zbl 1304.70009
[17] Czołczyński, K.; Perlikowski, P.; Stefański, A.; Kapitaniak, T., Why two clocks synchronize: Energy balance of the synchronized clocks, Chaos, 21, 023129 (2011) · Zbl 1317.34052
[18] Czolczynski, K.; Perlikowski, P.; Stefanski, A.; Kapitaniak, T., Huygens’ odd sympathy experiment revisited, Int. J. Bifurcat. Chaos, 21, 2047-2056 (2011) · Zbl 1248.34078
[19] Czolczynski, K.; Perlikowski, P.; Stefanski, A.; Kapitaniak, T., Synchronization of the self-excited pendula suspended on the vertically displacing beam, Commun. Nonlinear Sci. Numer. Simul., 18, 386-400 (2013) · Zbl 1294.70013
[20] Kapitaniak, M.; Czolczynski, K.; Perlikowski, P.; Stefanski, A.; Kapitaniak, T., Synchronization of clocks, Phys. Rep., 517, 1-69 (2012) · Zbl 1258.34073
[21] Jovanovic, V.; Koshkin, S., Synchronization of Huygens’ clocks and the Poincaré method, J. Sound Vib., 331, 2887-2900 (2012)
[22] Ramirez, J. P.; Fey, R. H.; Nijmeijer, H., Synchronization of weakly nonlinear oscillators with Huygens’ coupling, Chaos, 23, 033118 (2013) · Zbl 1323.34047
[23] Ramirez, J. P.; Fey, R.; Aihara, K.; Nijmeijer, H., An improved model for the classical Huygens experiment on synchronization of pendulum clocks, J. Sound Vib., 333, 7248-7266 (2014)
[24] Ramirez, J. P.; Aihara, K.; Fey, R.; Nijmeijer, H., Further understanding of Huygens’ coupled clocks: The effect of stiffness, Physica D, 270, 11-19 (2014) · Zbl 1302.70018
[25] Ramirez, J. P.; Olvera, L. A.; Nijmeijer, H.; Alvarez, J., The sympathy of two pendulum clocks: Beyond Huygens’ observations, Sci. Rep., 6, 23580 (2016)
[26] Ramirez, J. P.; Nijmeijer, H., The Poincaré method: A powerful tool for analyzing synchronization of coupled oscillators, Indag. Math., 27, 1127-1146 (2016) · Zbl 1385.34040
[27] Oliveira, H. M.; Melo, L. V., Huygens synchronization of two clocks, Sci. Rep., 5, 11548 (2015)
[28] Willms, A. R.; Kitanov, P. M.; Langford, W. F., Huygens’ clocks revisited, R. Soc. Open Sci., 4, 170777 (2017)
[29] Wiesenfeld, K., Huygens’s odd sympathy recreated, Soc. Politica, 11, 15-22 (2017)
[30] Pantaleone, J., Synchronization of metronomes, Am. J. Phys., 70, 992-1000 (2002)
[31] Kuznetsov, N. V., Leonov, G. A., Nijmeijer, H., and Pogromsky, A. Y., “Synchronization of two metronomes,” in Proceedings of the 3rd IFAC Workshop (PSYCO’07), 29-31 August 2007, Saint Petersburg, Russia (Springer, 2007), pp. 49-52.
[32] Ulrichs, H.; Mann, A.; Parlitz, U., Synchronization and chaotic dynamics of coupled mechanical metronomes, Chaos, 19, 043120 (2009)
[33] Wu, Y.; Wang, N.; Li, L.; Xiao, J., Anti-phase synchronization of two coupled mechanical metronomes, Chaos, 22, 023146 (2012) · Zbl 1331.34100
[34] Bahraminasab, A., see https://www.youtube.com/watch?v=W1TMZASCR-I for “Synchronisation” (2007).
[35] , see https://www.youtube.com/watch?v=JWToUATLGzs for “Synchronization of Thirty Two Metronomes” (2012).
[36] , see https://www.youtube.com/watch?v=e-c6S6SdkPo for “N-Sync” (2014).
[37] Lepschy, A. M.; Mian, G.; Viaro, U., Feedback control in ancient water and mechanical clocks, IEEE Trans. Educ., 35, 3-10 (1992)
[38] Moon, F. C.; Stiefel, P. D., Coexisting chaotic and periodic dynamics in clock escapements, Philos. Trans. R. Soc. A, 364, 2539-2564 (2006) · Zbl 1152.70310
[39] Roup, A. V.; Bernstein, D. S.; Nersesov, S. G.; Haddad, W. M.; Chellaboina, V., Limit cycle analysis of the verge and foliot clock escapement using impulsive differential equations and Poincaré maps, Int. J. Control, 76, 1685-1698 (2003) · Zbl 1052.93044
[40] Rowlings, A., The Science of Clocks and Watches (1944), Caldwell Industries: Caldwell Industries, Luling, TX
[41] Guckenheimer, J.; Holmes, P., Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (1983), Springer · Zbl 0515.34001
[42] Strogatz, S. H., Nonlinear Dynamics and Chaos (1994), Addison-Wesley
[43] Bender, C. M.; Orszag, S. A., Advanced Mathematical Methods for Scientists and Engineers (1999), Springer · Zbl 0938.34001
[44] Holmes, M. H., Introduction to Perturbation Methods (1995), Springer · Zbl 0830.34001
[45] Dhooge, A.; Govaerts, W.; Kuznetsov, Y. A.; Meijer, H. G. E.; Sautois, B., New features of the software matcont for bifurcation analysis of dynamical systems, Math. Comput. Model. Dyn. Syst., 14, 147-175 (2008) · Zbl 1158.34302
[46] Fradkov, A. L.; Andrievsky, B., Synchronization and phase relations in the motion of two-pendulum system, Int. J. Non Linear Mech., 42, 895-901 (2007)
[47] Kumon, M., Washizaki, R., Sato, J., Mizumoto, R., and Iwai, Z., “Controlled synchronization of two 1-DOF coupled oscillators,” in Proceedings of the 15th IFAC World Congress, Barcelona (Elsevier, 2002), pp. 3-10.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.