×

zbMATH — the first resource for mathematics

Birth and destruction of collective oscillations in a network of two populations of coupled type 1 neurons. (English) Zbl 1458.34089
Summary: We study the macroscopic dynamics of large networks of excitable type 1 neurons composed of two populations interacting with disparate but symmetric intra- and inter-population coupling strengths. This nonuniform coupling scheme facilitates symmetric equilibria, where both populations display identical firing activity, characterized by either quiescent or spiking behavior, or asymmetric equilibria, where the firing activity of one population exhibits quiescent but the other exhibits spiking behavior. Oscillations in the firing rate are possible if neurons emit pulses with non-zero width but are otherwise quenched. Here, we explore how collective oscillations emerge for two statistically identical neuron populations in the limit of an infinite number of neurons. A detailed analysis reveals how collective oscillations are born and destroyed in various bifurcation scenarios and how they are organized around higher codimension bifurcation points. Since both symmetric and asymmetric equilibria display bistable behavior, a large configuration space with steady and oscillatory behavior is available. Switching between configurations of neural activity is relevant in functional processes such as working memory and the onset of collective oscillations in motor control.
©2021 American Institute of Physics
MSC:
34C60 Qualitative investigation and simulation of ordinary differential equation models
92C20 Neural biology
34C15 Nonlinear oscillations and coupled oscillators for ordinary differential equations
Software:
MATCONT
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ermentrout, G. B.; Kopell, N., Parabolic bursting in an excitable system coupled with a slow oscillation, SIAM J. Appl. Math., 46, 2, 233-253 (1986) · Zbl 0594.58033
[2] Latham, P. E.; Richmond, B. J.; Nelson, P. G.; Nirenberg, S., Intrinsic dynamics in neuronal networks. I. Theory, J. Neurophysiol., 83, 2, 808-827 (2000)
[3] Hansel, D.; Mato, G., Existence and stability of persistent states in large neuronal networks, Phys. Rev. Lett., 86, 18, 4175-4178 (2001)
[4] Gerstner, W.; Kistler, W. M.; Naud, R.; Paninski, L., Neuronal Dynamics: From Single Neurons to Networks and Models of Cognition (2014), Cambridge University Press
[5] Ott, E.; Antonsen, T. M., Low dimensional behavior of large systems of globally coupled oscillators, Chaos, 18, 3, 037113 (2008) · Zbl 1309.34058
[6] Montbrió, E.; Pazó, D.; Roxin, A., Macroscopic description for networks of spiking neurons, Phys. Rev. X, 5, 2, 021028 (2015)
[7] Luke, T. B.; Barreto, E.; So, P., Complete classification of the macroscopic behavior of a heterogeneous network of theta neurons, Neural Comput., 25, 3207-3234 (2013) · Zbl 1448.92046
[8] Bick, C.; Laing, C.; Goodfellow, M.; Martens, E. A., Understanding the dynamics of biological and neural oscillator networks through exact mean-field reductions: A review, J. Math. Neurosci., 10, 9 (2020) · Zbl 1448.92011
[9] Byrne, Á.; Avitabile, D.; Coombes, S., Next-generation neural field model: The evolution of synchrony within patterns and waves, Phys. Rev. E, 99, 012313 (2019)
[10] Marder, E.; Bucher, D., Central pattern generators and the control of rythmic movements, Curr. Biol., 11, R986-R996 (2001)
[11] Smith, J. C.; Ellenberger, H. H.; Ballanyi, K.; Richter, D. W.; Feldman, J. L., Pre-Bötzinger complex: A brainstem region that may generate respiratory rhythm in mammals, Science, 254, 5032, 726-729 (1991)
[12] Buzsáki, G.; Wang, X.-J., Mechanisms of gamma oscillations, Annu. Rev. Neurosci., 35, 1, 203-225 (2012)
[13] Bullmore, E. T.; Sporns, O., Complex brain networks: Graph theoretical analysis of structural and functional systems, Nat. Rev. Neurosci., 10, 3, 186-198 (2009)
[14] Meunier, D.; Lambiotte, R.; Bullmore, E. T., Modular and hierarchically modular organization of brain networks, Front. Neurosci., 4, 200 (2010)
[15] Harris, K. D., Neural signatures of cell assembly organization, Nat. Rev. Neurosci., 6, 5, 399-407 (2005)
[16] Lynn, C. W.; Bassett, D. S., The physics of brain network structure, function and control, Nat. Rev. Phys., 1, 318-332 (2019)
[17] Glass, L., Synchronization and rhythmic processes in physiology, Nature, 410, 277-284 (2001)
[18] Uhlhaas, P. J.; Singer, W., Neural synchrony in brain disorders: Relevance for cognitive dysfunctions and pathophysiology, Neuron, 52, 1, 155-168 (2006)
[19] Fell, J.; Axmacher, N., The role of phase synchronization in memory processes, Nat. Rev. Neurosci., 12, 2, 105-118 (2011)
[20] Fries, P., Neuronal gamma-band synchronization as a fundamental process in cortical computation, Annu. Rev. Neurosci., 32, 209-224 (2009)
[21] Wang, X. J., Neurophysiological and computational principles of cortical rhythms in cognition, Physiol. Rev., 90, 3, 1195-1268 (2010)
[22] Singer, W.; Gray, C. M., Visual feature integration and the temporal correlation hypothesis, Annu. Rev. Neurosci., 18, 555-586 (1995)
[23] Fries, P., A mechanism for cognitive dynamics: Neuronal communication through neuronal coherence, Trends Cogn. Sci., 9, 10, 474-480 (2005)
[24] Rabinovich, M. I.; Afraimovich, V. S.; Bick, C.; Varona, P., Information flow dynamics in the brain, Phys. Life Rev., 9, 1, 51-73 (2012)
[25] Kirst, C.; Timme, M.; Battaglia, D., Dynamic information routing in complex networks, Nat. Commun., 7, 11061 (2016)
[26] Deschle, N.; Daffertshofer, A.; Battaglia, D.; Martens, E. A., Directed flow of information in chimera states, Front. Appl. Math. Stat., 5, 28, R102 (2019)
[27] Abrams, D. M.; Mirollo, R.; Strogatz, S. H.; Wiley, D. A., Solvable model for chimera states of coupled oscillators, Phys. Rev. Lett., 101, 084103 (2008)
[28] Martens, E. A.; Panaggio, M. J.; Abrams, D. M., Basins of attraction for chimera states, New J. Phys., 18, 022002 (2016) · Zbl 1456.34034
[29] Martens, E. A., Bistable chimera attractors on a triangular network of oscillator populations, Phys. Rev. E, 82, 1, 016216 (2010)
[30] Martens, E. A.; Bick, C.; Panaggio, M. J., Chimera states in two populations with heterogeneous phase-lag, Chaos, 26, 9, 094819 (2016) · Zbl 1382.92224
[31] Laing, C. R., The dynamics of chimera states in heterogeneous Kuramoto networks, Physica D, 238, 16, 1569-1588 (2009) · Zbl 1185.34042
[32] Laing, C. R.; Rajendran, K.; Kevrekidis, I. G., Chimeras in random non-complete networks of phase oscillators, Chaos, 22, 1, 013132 (2012) · Zbl 1331.34055
[33] Schöll, E., Synchronization patterns and chimera states in complex networks: Interplay of topology and dynamics, Eur. Phys. J. Spec. Top., 225, 6-7, 891-919 (2016)
[34] Panaggio, M. J.; Abrams, D. M., Chimera states: Coexistence of coherence and incoherence in networks of coupled oscillators, Nonlinearity, 28, 3, R67 (2015) · Zbl 1392.34036
[35] Laing, C. R., “Phase oscillator network models of brain dynamics,” in Computational Models of Brain and Behavior, edited by A. A. Moustafa (Wiley-Blackwell, 2017), Chap. 37, pp. 505-518.
[36] Luke, T. B.; Barreto, E.; So, P., Macroscopic complexity from an autonomous network of networks of theta neurons, Front. Comput. Neurosci., 8, 145 (2014)
[37] Schmidt, H.; Avitabile, D.; Montbrió, E.; Roxin, A., Network mechanisms underlying the role of oscillations in cognitive tasks, PLoS Comput. Biol., 14, 9, e1006430 (2018)
[38] Yamakou, M.; Hjorth, P. G.; Martens, E. A., Front. Comp. Neuroscience, 14, 62 (2002)
[39] Weerasinghe, G.; Duchet, B.; Cagnan, H.; Brown, P. R.; Bick, C.; Bogacz, R., PLoS Comp. Biology, 15 (2019)
[40] Watanabe, S.; Strogatz, S. H., Constants of motion for superconducting Josephson arrays, Physica D, 74, 3-4, 197-253 (1994) · Zbl 0812.34043
[41] Laing, C. R., The dynamics of networks of identical theta neurons, J. Math. Neurosci., 8, 4 (2018) · Zbl 1395.92040
[42] Wilson, H. R.; Cowan, J. D., Excitatory and inhibitory interactions in localized populations of model neurons, Biophys. J., 12, 1, 1-24 (1972)
[43] Amari, S., Dynamics of pattern formation in lateral-inhibition type neural fields, Biol. Cybern., 27, 2, 77-87 (1977) · Zbl 0367.92005
[44] Lin, L.; Barreto, E.; So, P., Synaptic diversity suppresses complex collective behavior in networks of theta neurons, Front. Comput. Neurosci., 14, 44 (2020)
[45] Buzsáki, G.; Watson, B. O., Brain rhythms and neural syntax: Implications for efficient coding of cognitive content and neuropsychiatric disease, Dialogues Clin. Neurosci., 14, 345-367 (2012)
[46] Fries, P.; Nikolić, D.; Singer, W., The gamma cycle, Trends Neurosci., 30, 7, 309-316 (2007)
[47] Keeley, S.; Fenton, A.; Rinzel, J., Modeling fast and slow gamma oscillations with interneurons of different subtype, J. Neurophysiol., 117, 3, 950-965 (2017)
[48] Keeley, S.; Byrne, A.; Fenton, A.; Rinzel, J., Firing rate models for gamma oscillations, J. Neurophysiol., 121, 6, 2181-2190 (2019)
[49] Segneri, M.; Bi, H.; Olmi, S.; Torcini, A., Theta-nested gamma oscillations in next generation neural mass models, Front. Comput. Neurosci., 14, 7373 (2020)
[50] Devalle, F.; Roxin, A.; Montbrió, E., Firing rate equations require a spike synchrony mechanism to correctly describe fast oscillations in inhibitory networks, PLoS Comput. Biol., 13, 12, e1005881 (2017)
[51] So, P.; Luke, T. B.; Barreto, E., Networks of theta neurons with time-varying excitability: Macroscopic chaos, multistability, and final-state uncertainty, Physica D, 267, 16-26 (2013) · Zbl 1285.92011
[52] Dhooge, A.; Govaerts, W.; Kuznetsov, Yu. A.; Meijer, H. G. E.; Sautois, B., New features of the software MatCont for bifurcation analysis of dynamical systems, Math. Comput. Model. Dyn. Syst., 14, 147-175 (2008) · Zbl 1158.34302
[53] Ermentrout, B., Ermentrout-Kopell canonical model, Scholarpedia, 3, 3, 1398 (2008)
[54] Ariaratnam, J. T.; Strogatz, S. H., Phase diagram for the Winfree model of coupled nonlinear oscillators, Phys. Rev. Lett., 86, 19, 4281 (2001)
[55] Ermentrout, G. B. and Terman, D. H., Mathematical Foundations of Neuroscience, Interdisciplinary Applied Mathematics Vol. 35 (Springer, New York, 2010). · Zbl 1320.92002
[56] Brunel, N.; Latham, P. E., Firing rate of the noisy quadratic integrate-and-fire neuron, Neural Comput., 15, 10, 2281-2306 (2003) · Zbl 1085.68617
[57] Ratas, I.; Pyragas, K., Macroscopic self-oscillations and aging transition in a network of synaptically coupled quadratic integrate-and-fire neurons, Phys. Rev. E, 94, 3, 032215 (2016)
[58] Kuznetsov, Y. A., Elements of Applied Bifurcation Theory (1998), Springer-Verlag: Springer-Verlag, New York · Zbl 0914.58025
[59] Guckenheimer, J.; Kuznetsov, Y., Bautin bifurcation, Scholarpedia, 2, 5, 1853 (2007)
[60] Guckenheimer, J.; Kuznetsov, Y., Fold-Hopf bifurcation, Scholarpedia, 2, 10, 1855 (2007)
[61] Bick, C.; Martens, E. A., Controlling chimeras, New J. Phys., 17, 033030 (2015) · Zbl 1452.34069
[62] Călugăru, D.; Totz, J. F.; Martens, E. A.; Engel, H., First-order synchronization transition in a large population of strongly coupled relaxation oscillators, Sci. Adv., 6, eabb2637 (2020)
[63] Bick, C.; Panaggio, M. J.; Martens, E. A., Chaos in Kuramoto oscillator networks, Chaos, 28, 071102 (2018) · Zbl 1396.34019
[64] Ratas, I.; Pyragas, K., Macroscopic oscillations of a quadratic integrate-and-fire neuron network with global distributed-delay coupling, Phys. Rev. E, 98, 5, 052224 (2018)
[65] Ceni, A.; Olmi, S.; Torcini, A.; Angulo-Garcia, D., Cross frequency coupling in next generation inhibitory neural mass models, Chaos, 30, 5, 053121 (2020) · Zbl 1437.92022
[66] Ratas, I.; Pyragas, K., Symmetry breaking in two interacting populations of quadratic integrate-and-fire neurons, Phys. Rev. E, 96, 4, 042212 (2017)
[67] Coombes, S. and Byrne, Á., “Next generation neural mass models,” in Nonlinear Dynamics in Computational Neuroscience (Springer, 2019), pp. 1-16.
[68] Shanahan, M., Metastable chimera states in community-structured oscillator networks, Chaos, 20, 1, 013108 (2010)
[69] Wildie, M.; Shanahan, M., Metastability and chimera states in modular delay and pulse-coupled oscillator networks, Chaos, 22, 4, 043131 (2012) · Zbl 1319.34097
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.