zbMATH — the first resource for mathematics

An interface-aware sub-scale dynamics multi-material cell model for solids with void closure and opening at all speeds. (English) Zbl 07335322
Summary: We present a multi-material cell model (closure model) for demanding arbitrary Lagrangian-Eulerian (ALE) simulations of fluids and solids. It is based on the interface-aware sub-scale dynamics (IASSD) approach which utilizes the exact material interface geometry within the computational cell to calculate internal material interactions. Our formulation of the closure model also aims to improve the accuracy in low-speed impact events.
Voids are used to represent ambient vacuum and internal free boundaries of the distinct materials. Void regions can close and open at contact surfaces, allowing a transition from contact physics to free motion in vacuum.
The coupling of void closure and opening with a new formulation of the IASSD model for solids is tested on several one- and two-dimensional numerical examples, ranging from gas expansion in vacuum to planar and round object impacts at various speeds.
76-XX Fluid mechanics
Full Text: DOI
[1] Caramana, E. J.; Burton, D. E.; Shashkov, M. J.; Whalen, P. P., The construction of compatible hydrodynamics algorithms utilizing conservation of total energy, J. Comput. Phys., 146, 1, 227-262 (1998) · Zbl 0931.76080
[2] Maire, P. H., A high-order cell-centered lagrangian scheme for two-dimensional compressible fluid flow on unstructured meshes, J. Comput. Phys., 228, 7, 2391-2425 (2009) · Zbl 1156.76434
[3] Knupp, P.; Steinberg, S., Fundamentals of grid generation (1993), CRC Press: CRC Press Boca Raton
[4] Winslow, A. M., Equipotential zoning of two-dimensional meshes, Tech Rep UCRL-7312, Lawrence Livermore National Laboratory (1963)
[5] Knupp, P. M.; Margolin, L. G.; Shashkov, M. J., Reference jacobian optimization-based rezone strategies for arbitrary lagrangian eulerian methods, J. Comput. Phys., 176, 1, 93-128 (2002) · Zbl 1120.76340
[6] Dukowicz, J. K.; Baumgardner, J. R., Incremental remapping as a transport/advection algorithm, J. Comput. Phys., 160, 1, 318-335 (2000) · Zbl 0972.76079
[7] Margolin, L. G.; Shashkov, M., Second-order sign-preserving remapping on general grids, Tech Rep LA-UR-02-525, Los Alamos National Laboratory (2002) · Zbl 1016.65004
[8] Loubere, R.; Shashkov, M., A subcell remapping method on staggered polygonal grids for arbitrary-lagrangian-eulerian methods, J. Comput. Phys., 209, 1, 105-138 (2005) · Zbl 1329.76236
[9] Kucharik, M.; Shashkov, M., Conservative multi-material remap for staggered multi-material arbitrary lagrangian-eulerian methods, J. Comput. Phys., 258, 268-304 (2014) · Zbl 1349.76493
[10] Barlow, A. J.; Maire, P.-H.; Rider, W. J.; Rieben, R. N.; Shashkov, M. J., Arbitrary lagrangian-eulerian methods for modeling high-speed compressible multimaterial flows, J. Comput. Phys., 322, 603-665 (2016) · Zbl 1351.76093
[11] Benson, D. J., Computational methods in lagrangian and eulerian hydrocodes, Comput. Methods Appl. Mech. Eng., 99, 2-3, 235-394 (1992) · Zbl 0763.73052
[12] Margolin, L. G., Introduction to “an arbitrary lagrangian-Eulerian computing method for all flow speeds”, J. Comput. Phys., 135, 2, 198-202 (1997) · Zbl 0938.76067
[13] Anderson, R. W.; Elliott, N. S.; Pember, R. B., An arbitrary lagrangian-eulerian method with adaptive mesh refinement for the solution of the euler equations, J. Comput. Phys., 199, 2, 598-617 (2004) · Zbl 1126.76348
[14] Galera, S.; Maire, P.-H.; Breil, J., A two-dimensional unstructured cell-centered multi-material ALE scheme using VOF interface reconstruction, J. Comput. Phys., 229, 16, 5755-5787 (2010) · Zbl 1346.76105
[15] Breil, J.; Galera, S.; Maire, P. H., Multi-material ALE computation in inertial confinement fusion code CHIC, Computers & Fluids, 46, 1, 161-167 (2011) · Zbl 1433.76190
[16] Youngs, D. L., Time dependent multi-material flow with large fluid distortion, (Morton, K. W.; Baines, M. J., Numerical Methods for Fluid Dynamics (1982), Academic Press), 273-285 · Zbl 0537.76071
[17] Dyadechko, V.; Shashkov, M., Reconstruction of multi-material interfaces from moment data, J. Comput. Phys., 227, 11, 5361-5384 (2008) · Zbl 1220.76048
[18] Kucharik, M.; Garimella, R.; Schofield, S.; Shashkov, M., A comparative study of interface reconstruction methods for multi-material ALE simulations, J. Comput. Phys., 229, 7, 2432-2452 (2010) · Zbl 1423.76343
[19] Tipton, R. E., CALE Mixed zone pressure relaxation model, Private communication (1989)
[20] Shashkov, M., Closure models for multimaterial cells in arbitrary lagrangian-eulerian hydrocodes, Int. J. Numer. Methods Fluids, 56, 8, 1497-1504 (2008) · Zbl 1151.76026
[21] Barlow, A.; Hill, R.; Shashkov, M., Constrained optimization framework for interface-aware sub-scale dynamics closure model for multimaterial cells in lagrangian and arbitrary lagrangian-eulerian hydrodynamics, J. Comput. Phys., 276, 92-135 (2014) · Zbl 1349.65196
[22] Wilkins M. Calculation of elastic-plastic flow. 1963. Tech. Rep. UCRL-7322, California. Univ., Livermore. Lawrence Radiation Lab.
[23] Maire, P.-H.; Abgrall, R.; Breil, J.; Loubere, R.; Rebourcet, B., A nominally second-order cell-centered lagrangian scheme for simulating elastic-plastic flows on two-dimensional unstructured grids, J. Comput. Phys., 235, 626-665 (2013) · Zbl 1291.74186
[24] Burton, D. E.; Morgan, N. R.; Charest, M. R.J.; Kenamond, M. A.; Fung, J., Compatible, energy conserving, bounds preserving remap of hydrodynamic fields for an extended ALE scheme, J Comput Phys, 355, 492-533 (2018) · Zbl 1380.76051
[25] Maire P.H. Contribution to the numerical modeling of inertial confinement fusion. 2011. Université Bordeaux I, Habilitation.
[26] Lohmann, C., Flux-corrected transport algorithms preserving the eigenvalue range of symmetric tensor quantities, J. Comput. Phys., 350, 907-926 (2017) · Zbl 1380.65278
[27] Luttwak, G.; Falcovitz, J., Slope limiting for vectors: a novel vector limiting algorithm, Int. J. Numer. Methods Fluids, 65, 11-12, 1365-1375 (2011) · Zbl 1453.76100
[28] Klima, M.; Kucharik, M.; Velechovsky, J.; Shashkov, M., Second-invariant-preserving remap of the 2d deviatoric stress tensor in ALE methods, Computers & Mathematics with Applications, 78, 2, 654-669 (2019)
[29] Barlow, A.; Klima, M.; Shashkov, M., Constrained optimization framework for interface-aware sub-scale dynamics models for voids closure in lagrangian hydrodynamics, J. Comput. Phys., 371, 914-944 (2018) · Zbl 1415.76445
[30] Kucharik, M.; Loubere, R.; Bednarik, L.; Liska, R., Enhancement of lagrangian slide lines as a combined force and velocity boundary condition, Computers & Fluids, 83, 3-14 (2013) · Zbl 1290.76137
[31] Caramana, E., The implementation of slide lines as a combined force and velocity boundary condition, J. Comput. Phys., 228, 11, 3911-3916 (2009) · Zbl 1273.76258
[32] Caramana, E.; Shashkov, M.; Whalen, P., Formulations of artificial viscosity for multi-dimensional shock wave computations, J Comput Phys, 144, 1, 70-97 (1998) · Zbl 1392.76041
[33] Menikoff R. Equations of state and fluid dynamics. 2007. Tech. Rep. LA-UR-07-3989, Los Alamos National Laboratory.
[34] Swansea, Wales, UK, 4-7 September 2001.
[35] Kuzmin, D.; Lohner, R., Flux corrected transport: principles, algorithms, and applications, scientific computation series (2005), Springer-Verlag: Springer-Verlag New York, LLC
[36] Zalesak, S. T., Fully multidimensional flux-corrected transport algorithms for fluids, J. Comput. Phys., 31, 3, 335-362 (1979) · Zbl 0416.76002
[37] Nocedal, J.; Wright, S., Numerical optimization (1999), Springer · Zbl 0930.65067
[38] Schittkowski K. QL: A fortran code for convex quadratic programming – user’s guide. 2011. Tech. rep., University of Bayreuth, Dept. of Computer Science, http://www.klaus-schittkowski.de/software.htm, Accessed 21.11.2016.
[39] Jemison, M.; Sussman, M.; Shashkov, M., Filament capturing with the multimaterial moment-of-fluid method, J. Comput. Phys., 285, 149-172 (2015) · Zbl 1352.65324
[40] Udaykumar, H.; Tran, L.; Belk, D.; Vanden, K., An eulerian method for computation of multimaterial impact with eno shock-capturing and sharp interfaces, J. Comput. Phys., 186, 1, 136-177 (2003) · Zbl 1047.76558
[41] ISBN 3-540-61676-4 · Zbl 0888.76001
[42] Rider W. Void’s unphysical response in hydrocodes, presentation at nuclear explosives code development conference held october 20-24. 20142014 in Los Alamos, NM, sAND2014-18762PE. https://www.osti.gov/scitech/biblio/1241862.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.