×

Symbolic proof of bistability in reaction networks. (English) Zbl 1465.37105


MSC:

37N25 Dynamical systems in biology
37C75 Stability theory for smooth dynamical systems
92C42 Systems biology, networks

Software:

crntwin; MESSI; CoNtRol
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] M. Ali Al-Radhawi and D. Angeli, New approach to the stability of chemical reaction networks: Piecewise linear in rates Lyapunov functions, IEEE Trans. Automat. Control, 61 (2016), pp. 76-89. · Zbl 1359.93440
[2] J. J. Anagnost and C. A. Desoer, An elementary proof of the Routh-Hurwitz criterion, Circuits Systems Signal Process, 10 (1991), pp. 101-114. · Zbl 0731.93077
[3] D. Angeli, P. De Leenheer, and E. Sontag, Graph-theoretic characterizations of monotonicity of chemical networks in reaction coordinates, J. Math. Biol., 61 (2010), pp. 581-616. · Zbl 1204.92038
[4] M. Banaji and C. Pantea, Some results on injectivity and multistationarity in chemical reaction networks, SIAM J. Appl. Dyn. Syst., 15 (2016), pp. 807-869, https://doi.org/10.1137/15M1034441. · Zbl 1342.80011
[5] M. Banaji and C. Pantea, The inheritance of nondegenerate multistationarity in chemical reaction networks, SIAM J. Appl. Math., 78 (2018), pp. 1105-1130, https://doi.org/10.1137/16M1103506. · Zbl 1395.80004
[6] S. Barnett, A new formulation of the theorems of Hurwitz, Routh and Sturm, J. Inst. Math. Appl., 8 (1971), pp. 240-250. · Zbl 0226.65037
[7] S. Basu, R. Pollack, and M.-F. Roy, Algorithms in Real Algebraic Geometry, 2nd ed., Algorithms Comput. Math. 10, Springer-Verlag, Berlin, 2006. · Zbl 1102.14041
[8] F. Bihan, A. Dickenstein, and M. Giaroli, Lower bounds for positive roots and regions of multistationarity in chemical reaction networks, J. Algebra, 542 (2020), pp. 367-411. · Zbl 1453.92120
[9] G. Blekherman, Nonnegative polynomials and sums of squares, J. Amer. Math. Soc., 25 (2012), pp. 617-635. · Zbl 1258.14067
[10] D. Cappelletti, E. Feliu, and C. Wiuf, Addition of flow reactions preserving multistationarity and bistability, Math. Biosci., 320 (2020), 108295. · Zbl 1437.92047
[11] D. Carlson, A class of positive stable matrices, J. Res. Nat. Bur. Standards Sect B, 78 (1974), pp. 1-2. · Zbl 0281.15020
[12] B. L. Clarke, Graph theoretic approach to the stability analysis of steady state chemical reaction networks, J. Chem. Phys., 60 (1974), pp. 1481-1492, https://doi.org/10.1063/1.1681221.
[13] B. L. Clarke, Stability of Complex Reaction Networks, Adv. in Chem. Phys. 43, John Wiley & Sons, Hoboken, NJ, 1980.
[14] C. Conradi, E. Feliu, M. Mincheva, and C. Wiuf, Identifying parameter regions for multistationarity, PLoS Comput. Biol., 13 (2017), e1005751.
[15] C. Conradi and D. Flockerzi, Switching in mass action networks based on linear inequalities, SIAM J. Appl. Dyn. Syst., 11 (2012), pp. 110-134, https://doi.org/10.1137/10081722X. · Zbl 1235.37034
[16] C. Conradi and M. Mincheva, Catalytic constants enable the emergence of bistability in dual phosphorylation, J. Roy. Sci. Interface, 11 (2014), https://doi.org/10.1098/rsif.2014.0158.
[17] C. Conradi, M. Mincheva, and A. Shiu, Emergence of oscillations in a mixed-mechanism phosphorylation system, Bull. Math. Biol., 81 (2019), pp. 1829-1852. · Zbl 1415.92092
[18] D. Cox, J. Little, and D. O’Shea, Ideals, Varieties, and Algorithms, 3rd ed., Undergrad. Texts Math., Springer, New York, 2007.
[19] G. Craciun, A. Dickenstein, A. Shiu, and B. Sturmfels, Toric dynamical systems, J. Symbolic Comput., 44 (2009), pp. 1551-1565. · Zbl 1188.37082
[20] G. Craciun and M. Feinberg, Multiple equilibria in complex chemical reaction networks: Extensions to entrapped species models, Syst. Biol. (Stevenage), 153 (2006), pp. 179-186.
[21] B. N. Datta, An elementary proof of the stability criterion of Liénard and Chipart, Linear Algebra Appl., 22 (1978), pp. 89-96. · Zbl 0402.15005
[22] A. Dickenstein and M. Pérez Millán, How far is complex balancing from detailed balancing?, Bull. Math. Biol., 73 (2011), pp. 811-828. · Zbl 1214.92036
[23] P. Donnell and M. Banaji, Local and global stability of equilibria for a class of chemical reaction networks, SIAM J. Appl. Dyn. Syst., 12 (2013), pp. 899-920, https://doi.org/10.1137/120898486. · Zbl 1284.92120
[24] P. Donnell, M. Banaji, A. Marginean, and C. Pantea, Control: An open source framework for the analysis of chemical reaction networks, Bioinform., 30 (2014), pp. 1633-1634.
[25] M. Dressler, S. Iliman, and T. de Wolff, A positivstellensatz for sums of nonnegative circuit polynomials, SIAM J. Appl. Algebra Geom., 1 (2017), pp. 536-555, https://doi.org/10.1137/16M1086303. · Zbl 1372.14051
[26] P. Ellison, M. Feinberg, H. Ji, and D. Knight, Chemical Reaction Network Toolbox, Version 2.2, 2012; available online at http://www.crnt.osu.edu/CRNTWin.
[27] H. Errami, M. Eiswirth, D. Grigoriev, W. M. Seiler, T. Sturm, and A. Weber, Detection of Hopf bifurcations in chemical reaction networks using convex coordinates, J. Comput. Phys., 291 (2015), pp. 279-302, https://doi.org/10.1016/j.jcp.2015.02.050. · Zbl 1349.92168
[28] M. Feinberg, Complex balancing in general kinetic systems, Arch. Rational Mech. Anal., 49 (1972), pp. 187-194, https://doi.org/10.1007/BF00255665.
[29] M. Feinberg, Foundations of Chemical Reaction Network Theory, Appl. Math. Sci. 202, Springer, 2019, https://doi.org/10.1007/978-3-030-03858-8. · Zbl 1420.92001
[30] E. Feliu, N. Kaihnsa, T. de Wolff, and O. Yürük, The kinetic space of multistationarity in dual phosphorylation, J. Dynam. Differential Equations (2020), https://doi.org/10.1007/s10884-020-09889-6.
[31] E. Feliu, A. D. Rendall, and C. Wiuf, A proof of unlimited multistability for phosphorylation cycles, Nonlinearity, 33 (2020), pp. 5629-5658. · Zbl 1456.34047
[32] E. Feliu and C. Wiuf, Enzyme-sharing as a cause of multi-stationarity in signalling systems, J. Roy. Sci. Interface, 9 (2012), pp. 1224-32.
[33] E. Feliu and C. Wiuf, Variable elimination in chemical reaction networks with mass-action kinetics, SIAM J. Appl. Math., 72 (2012), pp. 959-981, https://doi.org/10.1137/110847305. · Zbl 1251.92050
[34] E. Feliu and C. Wiuf, Simplifying biochemical models with intermediate species, J. Roy. Sci. Interface, 10 (2013), 20130484. · Zbl 1278.92012
[35] E. Feliu and C. Wiuf, Variable elimination in post-translational modification reaction networks with mass-action kinetics, J. Math. Biol., 66 (2013), pp. 281-310. · Zbl 1256.92019
[36] S. Feng, M. Sáez, C. Wiuf, E. Feliu, and O. S. Soyer, Core signalling motif displaying multistability through multi-state enzymes, J. Roy. Sci. Interface, 13 (2016), 20160524.
[37] G. M. Guidi and A. Goldbeter, Bistability without hysteresis in chemical reaction systems: A theoretical analysis of irreversible transitions between multiple steady states, J. Phys. Chem. A, 101 (1997), pp. 9367-9376, https://doi.org/10.1021/jp972244k.
[38] J. Gunawardena, A linear framework for time-scale separation in nonlinear biochemical systems, PLoS ONE, 7 (2012), e36321.
[39] J. Hell and A. D. Rendall, A proof of bistability for the dual futile cycle, Nonlinear Anal. Real World Appl., 24 (2015), pp. 175-189, https://doi.org/10.1016/j.nonrwa.2015.02.004. · Zbl 1331.34089
[40] F. J. M. Horn and R. Jackson, General mass action kinetics, Arch. Rational Mech. Anal., 47 (1972), pp. 81-116.
[41] S. Iliman and T. de Wolff, Amoebas, nonnegative polynomials and sums of squares supported on circuits, Res. Math. Sci., 3 (2016), 9, https://doi.org/10.1186/s40687-016-0052-2. · Zbl 1415.11071
[42] B. Joshi and A. Shiu, Atoms of multistationarity in chemical reaction networks, J. Math. Chem., 51 (2013), pp. 153-178. · Zbl 1352.92186
[43] B. Joshi and A. Shiu, A survey of methods for deciding whether a reaction network is multistationary, Math. Model. Nat. Phenom., 10 (2015), pp. 47-67, https://doi.org/10.1051/mmnp/201510504. · Zbl 1371.92148
[44] V. B. Kothamachu, E. Feliu, L. Cardelli, and O. S. Soyer, Unlimited multistability and boolean logic in microbial signalling, J. Roy. Sci. Interface, 12 (2015), 20150234.
[45] S. Müller, E. Feliu, G. Regensburger, C. Conradi, A. Shiu, and A. Dickenstein, Sign conditions for the injectivity of polynomial maps in chemical kinetics and real algebraic geometry, Found. Comput. Math., 16 (2016), pp. 69-97. · Zbl 1382.92272
[46] S. Müller and G. Regensburger, Generalized mass action systems: Complex balancing equilibria and sign vectors of the stoichiometric and kinetic-order subspaces, SIAM J. Appl. Math., 72 (2012), pp. 1926-1947, https://doi.org/10.1137/110847056. · Zbl 1261.92063
[47] A. J. Ninfa and A. E. Mayo, Hysteresis vs. graded responses: The connections make all the difference, Sci. Signaling, 2004 (2004), pp. 20-20, https://doi.org/10.1126/stke.2322004pe20.
[48] E. M. Ozbudak, M. Thattai, H. N. Lim, B. I. Shraiman, and A. van Oudenaarden, Multistability in the lactose utilization network of Escherichia coli, Nature, 427 (2004), pp. 737-740, https://doi.org/10.1038/nature02298.
[49] C. Pantea, H. Koeppl, and G. Craciun, Global injectivity and multiple equilibria in uni- and bi-molecular reaction networks, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), pp. 2153-2170. · Zbl 1253.80023
[50] M. Pérez Millán and A. Dickenstein, The structure of MESSI biological systems, SIAM J. Appl. Dyn. Syst., 17 (2018), pp. 1650-1682, https://doi.org/10.1137/17M1113722. · Zbl 1395.92071
[51] M. Pérez Millán, A. Dickenstein, A. Shiu, and C. Conradi, Chemical reaction systems with toric steady states, Bull. Math. Biol., 74 (2012), pp. 1027-1065. · Zbl 1251.92016
[52] L. Perko, Differential Equations and Dynamical Systems, 3rd ed., Texts Appl. Math. 7, Springer-Verlag, New York, 2001. · Zbl 0973.34001
[53] A. Sadeghimanesh and E. Feliu, The multistationarity structure of networks with intermediates and a binomial core network, Bull. Math. Biol., 81 (2019), pp. 2428-2462, https://doi.org/10.1007/s11538-019-00612-1. · Zbl 1417.92058
[54] M. Sáez, C. Wiuf, and E. Feliu, Nonnegative linear elimination for chemical reaction networks, SIAM J. Appl. Math., 79 (2019), pp. 2434-2455, https://doi.org/10.1137/18M1197692. · Zbl 1429.92076
[55] M. Thomson and J. Gunawardena, The rational parameterization theorem for multisite post-translational modification systems, J. Theoret. Biol., 261 (2009), pp. 626-636. · Zbl 1403.92085
[56] A. I. Vol’pert, Differential equations on graphs, Math. USSR-Sb, 17 (1972), pp. 571-582.
[57] C. Wiuf and E. Feliu, Power-law kinetics and determinant criteria for the preclusion of multistationarity in networks of interacting species, SIAM J. Appl. Dyn. Syst., 12 (2013), pp. 1685-1721, https://doi.org/10.1137/120873388. · Zbl 1278.92012
[58] X. Yang, Generalized form of Hurwitz-Routh criterion and Hopf bifurcation of higher order, Appl. Math. Lett., 15 (2002), pp. 615-621, https://doi.org/10.1016/S0893-9659(02)80014-3. · Zbl 1006.34041
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.