zbMATH — the first resource for mathematics

SLAU2 applied to two-dimensional, ideal magnetohydrodynamics simulations. (English) Zbl 07336661
Summary: SLAU2 (Simple Low-dissipation Advection-Upstream-splitting-method 2) numerical flux function, one of AUSM-type methods (3-wave solver), originally developed and widely used in gasdynamics, has been applied to two-dimensional magnetohydrodynamics (MHD) simulations. According to numerical tests for a wide range of flow and magnetic conditions, its reliability, efficiency, and accuracy have been demonstrated: i) Robustness of SLAU2 against shock-anomalies (e.g., carbuncle phenomena) has been confirmed in the MHD-extended version of our hypersonic flow test; ii) The computational cost has been reduced for approximately 3% compared with HLLD (Harten-Lax-van\(\_\)Leer with Discontinuities), a more expensive, 5-wave solver; iii) Nevertheless, its solution qualities are almost equal to those of HLLD, as opposed to very diffused HLL solutions. For benchmark tests, detailed and important flow physics such as multidimensional shock/shock interactions have been successfully reproduced by SLAU2. We hope that SLAU2 will contribute to further progress of the astrophysics and other research fields.
76-XX Fluid mechanics
SLAU2; MHD; Euler fluxes
Full Text: DOI
[1] Esquivel, A.; Raga, A. C.; Cantó, J.; Rodríguez-González, A.; López-Cámara, D.; Velázquez, P. F.; De Colle, F., Model of Mira’sCometary Head/Tail Entering the Local Bubble, Astrophysical Journal, 725, 1466-1475 (2010)
[2] Ohnishi, N.; Kotake, K.; Yamada, S., Numerical Analysis on Standing Accretion Shock Instability with Neutrino Heating in the Supernova Cores, Astrophysical Journal, 667, 1, 375-381 (2007)
[3] Hanawa, T.; Mikami, H.; Matsumoto, T., Improving shock irregularities based on the characteristics of the MHD equations, J. Comput. Phys., 227, 7952-7976 (2008) · Zbl 1268.76038
[4] Poggie, J.; Gaitonde, D. V., Magnetic Control of Flow Past a Blunt Body: numerical Validation and Exploration, Physics of Fluids, 14, 1720, 1720-1731 (2002) · Zbl 1185.76297
[5] ITER Physics Basis, Nuclear Fusion, 39, 2137-2638 (1999)
[6] Loarte, A.; Liu, F.; Huijsmans, G. T.A.; Kukushkin, A. S.; Pitts, R. A., MHD stability of the ITER pedestal and SOL plasma and its influence on the heat flux width, Journal of Nuclear Materials, 463, 401-405 (2015)
[7] van Leer, B., Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method, J. Comput. Phys., 32, 1, 101-136 (1979) · Zbl 1364.65223
[8] Suresh, A.; Huynh, H. T., Accurate Monotonicity-Preserving Schemes with Runge-Kutta Time Stepping, J. Comput. Phys., Vol.136, 83-99 (1997) · Zbl 0886.65099
[9] Roe, P. L., Characteristic-based Schemes for the Euler Equations, Ann. Rev. Fluid Mech., Vol.18, 337-365 (1986) · Zbl 0624.76093
[10] Roe, P. L., Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes, J. Comput. Phys., 43, 357-372 (1981) · Zbl 0474.65066
[11] Miyoshi, T.; Kusano, K., A Multi-State HLL Approximate Riemann Solver for Ideal Magnetohydrodynamics, J. Comput. Phys., 208, 315-344 (2005) · Zbl 1114.76378
[12] Kitamura, K.; Shima, E., Towards Shock-Stable and Accurate Hypersonic Heating Computations: a New Pressure Flux for AUSM-family Schemes, J. Comput. Phys., Vol.245, 62-83 (2013) · Zbl 1349.76487
[13] Harten, A.; Lax, P. D.; Van Leer, B., On upstream differencing and Godunov-type schemes for hyperbolic conservation laws, SIAM Reviews, 25, 1, 35-61 (1983) · Zbl 0565.65051
[14] Gottlieb, S.; Shu, C.-. W., Total variation diminishing Runge-Kutta schemes, Math. Comput., 67, 73-85 (1998) · Zbl 0897.65058
[15] Dedner, A.; Kemm, F.; Kroner, D.; Munz, C. D.; Schnitzer, T.; Wesenberg, M., Hyperbolic Divergence Cleaning for the MHD Equations, J. Comput. Phys., 175, 645-673 (2002) · Zbl 1059.76040
[16] Balsara, D. S., Second-order-accurate schemes for magnetohydrodynamics with divergence-free reconstruction, Astrophys. J. Suppl. Ser., Vol.151, 149-184 (2004)
[17] Balsara, D. S.; Spicer, D. S., A Staggered Mesh Algorithm using High Order Godunov Fluxes to Ensure Solenoidal Magnetic Fields in Magnetohydrodynamics Simulation, J. Comput. Phys., Vol.149, 270-292 (1999) · Zbl 0936.76051
[18] Tóth, G., The ▽, •B = 0 Constraint in Shock-Capturing Magnetohydrodynamics Codes, J. Comput. Phys., 161, 605-652 (2000) · Zbl 0980.76051
[19] Powell, K. G.; Roe, P. L.; Linde, T.; Gombosi, T. I.; De Zeeuw, D. L., A Solution-Adaptive Upwind Scheme for Ideal Magnetohydrodynamics, J. Comput. Phys., 154, 284-309 (1999) · Zbl 0952.76045
[20] Kitamura, K.; Shima, E.; Fujimoto, K.; Wang, Z. J., Performance of Low-Dissipation Euler Fluxes and Preconditioned LU-SGS at Low Speeds, Communi. in Comput. Phys, Vol.10, 1, 90-119 (2011) · Zbl 1364.76115
[21] Pandolfi, M.; D’Ambrosio, D., Numerical Instabilities in Upwind Methods: analysis and Cures for the “Carbuncle” Phenomenon, J. Comput. Phys., 166, 2, 271-301 (2001) · Zbl 0990.76051
[22] Chauvat, Y.; Moschetta, J. M.; Gressier, J., Shock Wave Numerical Structure and the Carbuncle Phenomenon, Int J Numer Methods Fluids, 47, 8-9, 903-909 (2005) · Zbl 1134.76372
[23] Dumbser, M.; Moschetta, J. M.; Gressier, J., A Matrix Stability Analysis of the Carbuncle Phenomenon, J. Comput. Phys., 197, 2, 647-670 (2004) · Zbl 1079.76607
[24] Quirk, J. J., A Contribution to the Great Riemann Solver Debate, Int J Numer Methods Fluids, 18, 6, 555-574 (1994) · Zbl 0794.76061
[25] Kitamura, K.; Roe, P.; Ismail, F., Evaluation of Euler Fluxes for Hypersonic Flow Computations, AIAA Journal, 47, 44-53 (2009)
[26] Kitamura, K.; Shima, E.; Roe, P., Carbuncle Phenomena and Other Shock Anomalies in Three Dimensions, AIAA Journal, 50, 12, 2655-2669 (2012)
[27] Brio, M.; Wu, C. C., An Upwind Differencing Scheme for the Equations of Ideal Magnetohydrodynamics, J. Comput. Phys., 75, 400-422 (1988) · Zbl 0637.76125
[28] Ryu, D. S.; Jones, T. W., Numerical Magnetohydrodynamics in Astrophysics: algorithm and Test for One-Dimensional Flow, Astrophysical Journal, 442, 228-258 (1995)
[29] Roe, P. L.; Balsara, D. S., Notes on the Eigensystem of Magnetohydrodynamics, SIAM J. Appl. Math., 56, 57-67 (1996) · Zbl 0845.35092
[30] Cargo, P.; Gallice, G., Roe Matrices for Ideal MHD and Systematic Construction of Roe Matrices for Systems of Conservation Laws, J. Comput. Phys., 136, 446-466 (1997) · Zbl 0919.76053
[31] Balsara, D. S., Linearized Formulation of the Riemann Problem for Adiabatic and Isothermal Magnetohydrodynamics, Ap.J. Supp, 116, 119-131 (1998)
[32] Dumbser, M.; Balsara, D. S., A new efficient formulation of the HLLEM Riemann solver for general conservative and non-conservative hyperbolic systems, J. Comput. Phys., Vol.304, 275-319 (2016) · Zbl 1349.76603
[33] Liou, M. S., Mass flux schemes and connection to shock instability, J. Comput. Phys, 160, 623-648 (2000) · Zbl 0967.76062
[34] Matsumoto, Y.; Asahina, Y.; Kudoh, Y.; Kawashima, T.; Matsumoto, J.; Takahashi, H. R., Magnetohydrodynamic Simulation Code CANS+: assessments and Applications, Publ. Astron. Soc. Japan, 71, 4, 83 (2019)
[35] Stone, J. M.; Gardiner, T. A.; Teuben, P.; Hawley, J. F.; Simon, J. B., ATHENA: a New Code for Astrophysical MHD, The Astrophysical Journal Supplement Series, 178, 1, 137-177 (2008)
[36] Minoshima, T.; Miyoshi, T.; Matsumoto, Y., A high-order weighted finite difference scheme with a multi-state approximate Riemann solver for divergence-free magnetohydrodynamic simulations, Ap.J. Supp, 242, 2 (2019)
[37] Kitamura, K.; Balsara, D. S., “Hybridized SLAU2-HLLI and hybridized AUSMPW+-HLLI Riemann solvers for accurate, robust, and efficient magnetohydrodynamics (MHD) simulations, part I: one-dimensional MHD, Shock Waves, 29, 611-627 (2019)
[38] Xisto, C. M.; Páscoa1, J. C.; Oliveira, P. J., A Pressure-Based High Resolution Numerical Method for Resistive MHD, J. Comput. Phys., 275, 323-345 (2014) · Zbl 1349.76914
[39] Han, S. H.; Lee, J. I.; Kim, K. H., Accurate and Robust Pressure Weight Advection Upstream Splitting Method for Magnetohydrodynamics Equations, AIAA Journal, 47, 4, 970-981 (2009)
[40] Shen, Y.; Zha, G.; Huerta, M. A., E-CUSP Scheme for the Equations of Ideal Magnetohydrodynamics with High Order WENO Scheme, J. Comput. Phys., 231, 6233-6247 (2012)
[41] Li, S., An HLLC Riemann Solver for Magnetohydrodynamics, J. Comput. Phys., 203, 344-357 (2005) · Zbl 1299.76302
[42] Gurski, K. F., An HLLC-Type Approximate Riemann Solver for Ideal Magnetohydrodynamics, SIAM J. Sci. Comput., 25, 6, 2165-2187 (2004) · Zbl 1133.76358
[43] Van Leer, B., Flux-vector splitting for the Euler equations, Lect. Notes Phys, 170, 507-512 (1982)
[44] Kim, K. H.; Kim, C.; Rho, O. H., Methods for the Accurate Computations of Hypersonic Flows: I. AUSMPW+ Scheme, J. Comput. Phys., 174, 38-80 (2001) · Zbl 1106.76421
[45] Kitamura, K.; Shima, E.; Nakamura, Y.; Roe, P., Evaluation of Euler fluxes for hypersonic heating computations, AIAA J, 48, 4, 763-776 (2010)
[46] Zha, G.-. C.; Shen, Y.; Wang, B., An improved low diffusion E-CUSP upwind scheme, Comput Fluids, 48, 214-220 (2011) · Zbl 1271.76200
[47] Kitamura, K., Assessment of SLAU2 and Other Flux Functions with Slope Limiters in Hypersonic Shock-Interaction Heating, Comput Fluids, 129, 134-145 (2016) · Zbl 1390.76281
[48] Weiss, J. M.; Smith, W. A., Preconditioning Applied to Variable and Constant Density Flows, AIAA Journal, 33, 11, 2050-2057 (1995) · Zbl 0849.76072
[49] Liu, Y.; Vinokur, M., Upwind Algorithms for General Thermo-Chemical Nonequilibrium Flows, AIAA Paper 89-0201 (1989)
[50] Toro, E. F.; Spruce, M.; Speares, W., Restoration of the contact surface in the HLL Riemann solver, Shock Waves, 4, 25-34 (1994) · Zbl 0811.76053
[51] Rusanov, V. V., Calculation of Interaction of Non-Steady Shock Waves with Obstacles, Journal of Computational and Mathematical Physics USSR, 1, 267-279 (1961)
[52] Janhunen, P., A Positive Conservative Method for Magnetohydrodynamics Based HLL and Roe Methods, J. Comput. Phys, 160, 649-661 (2000) · Zbl 0967.76061
[53] Sanders, R.; Morano, E.; Druguetz, M. C., Multidimensional Dissipation for Upwind Schemes: stability and Applications to Gas Dynamics, J. Comput. Phys, 145, 2, 511-537 (1998) · Zbl 0924.76076
[54] Shima, E.; Kitamura, K., Multidimensional numerical noise from captured shockwave and its cure, AIAA J, 51, 992-998 (2013)
[55] Hashimoto, A.; Murakami, K.; Aoyama, T.; Ishiko, K.; Hishida, M.; Sakashita, M.; Lahur, P., Toward the Fastest Unstructured CFD Code ’FaSTAR,’, (AIAA-2012-1075 (2012))
[56] Kitamura, K.; Fujimoto, K.; Shima, E.; Kuzuu, K.; Wang, Z. J., Validation of an arbitrary unstructured CFD code for aerodynamic analyses, Trans. Jpn. Soc. Aeronaut. Space Sci., 53, 311-319 (2011)
[57] Molina, E.; Zhou, B. Y.; Alonso, J. J.; Righi, M.; Silva, R. G., Flow and Noise Predictions Around Tandem Cylinders using DDES approach with SU2, (AIAA 2019-0326, AIAA Scitech 2019 Forum, 7-11 January. AIAA 2019-0326, AIAA Scitech 2019 Forum, 7-11 January, San Diego, California (2019))
[58] Brown, B. P.; Vasil, G. M.; Zweibel, E. G., Energy Conservation and Gravity Waves in Sound-Proof Treatments of Stellar Interiors, Part I. Anelastic Approximations,” Astrophysical Journal, 756, 109 (2012), 20pp
[59] MacGregor, K. B.; Rogers, T. M., Reflection and Ducting of Gravity Waves Inside the Sun, Sol Phys, 270, 2, 417-436 (2011)
[60] Brun, A. S.; Miesch, M. S.; Toomre, J., Modeling the Dynamical Coupling of Solar Convection with the Radiative Interior, Astrophysical Journal, 742, 79, 20pp (2011)
[61] Stix, M., The Sun: an introduction, Astronomy and astrophysics library (2004), Springer: Springer Berlin, ISBN: 3-540-20741-4
[62] Liou, M.-. S., A Sequel to AUSM, Part II: AUSM+-up for All Speeds, J. Comput. Phys., 214, 137-170 (2006) · Zbl 1137.76344
[63] Ryu, D.; Jones, T. W.; Frank, A., Numerical magnetohydrodynamics in astrophysics: algorithm and tests for multi-dimensional flow, Astrophys. J., 452, 785-796 (1995)
[64] Barth, T. J., Some Notes on Shock-Resolving Flux Functions Part 1: stationary Characteristics, (NASA TM-101087 (1989))
[65] Orszag, A.; Tang, C. M., Small-Scale Structure of Two-Dimensional Magnetohydrodynamic Turbulence, J Fluid Mech, 90, 129-143 (1979)
[66] Gardiner, T. A.; Stone, J. M., An unsplit Godunov method for ideal MHD via constrained transport, J. Comput. Phys, Vol.205, 509-539 (2005) · Zbl 1087.76536
[67] Londrillo, P.; Del Zanna, L., High-Order Upwind Schemes for Multidimensional Magnetohydrodynamics, Astrophys. J., 530, 1, 508-524 (2000)
[68] Dai, W.; Woodward, P. R., On the Divergence-free Condition and Conservation Laws in Numerical Simulations for Supersonic Magnetohydrodynamical Flows, Astrophys. J., 494, 317-335 (1998)
[69] Miura, A.; Pritchett, P. L., Nonlocal Stability Analysis of the MHD Kelvin-Helmholtz Instability in a Compressible Plasma, J. Geophys. Res., 87, 7431-7444 (1982) · Zbl 1245.65137
[70] CANS+ web site, http://www.astro.phys.s.chiba-u.ac.jp/cans/doc/application_kh.html(Accessed on Oct-01-2019)
[71] Tzeferacos, P.; Fatenejad, M.; Flocke, N.; Graziani, C.; Gregori, G.; Lamb, D. Q.; Lee, D.; Meinecke, J.; Scopatz, A.; Weide, K., FLASH MHD Simulations of Experiments that study Shock-Generated Magnetic Fields, High Energy Density Physics, 17, Part A, 24-31 (2015)
[72] Mignone, A., Bodo, G., Massaglia, S., Matsakos, T., Tesileanu, O., Zanni, C., Ferrari, A., “PLUTO: a Numerical Code for Computational Astrophysics,” arXiv:astro-ph/0701854 (accessed on Sep-19-2017) (2007).
[73] Linde, T., A practical, general‐purpose, two‐state HLL Riemann solver for hyperbolic conservation laws, Int. J. Numer. Meth. Fluids, Vol.40, 391-402 (2002) · Zbl 1020.76036
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.